‘ADVANCED SIGNAL PROCESSING TECHNIQUES FOR INVERSE SYNTHETIC APERTURE RADAR (ISAR) IMAGING’

A. Karakassiliotis*, G. Boultadakis*, G. Kalognomos*, B. A. Massinas** and P. Frangos*
*School of Electrical and Computer Engineering
** Dionysos Satellite Observatory/
School of Rural and Surveying Engineering
National Technical University of Athens, Greece

Presentation by : Prof. Panayiotis Frangos
I. GENERAL OVERVIEW OF FUNDAMENTAL PRINCIPLES OF ISAR IMAGING

A. Karakassiliotis*, G. Boultadakis*, G. Kalognomos*
(Ph.D. students)
B. A. Massinas**(Research Associate)
P. Frangos* (Professor)

*School of Electrical and Computer Engineering
** School of Rural and Survey Engineering
National Technical University of Athens, GREECE
Non-Cooperative Radar Target Recognition Techniques (NCTR) :

(i) Jet Engine Modulation (JEM)
(ii) High – Resolution Radar Range Profiles (1D HRR)
(iii) Inverse Synthetic Aperture Radar (2D ISAR)
(i) Jet engine Modulation (JEM) [older technique]

- **Body line**: reflections from the whole aircraft

- **Blade - Chopping Frequency - BCF**: frequency corresponding to a full rotation of the first rotor stage

- **Shaft – Rotation Frequency - SRF**: frequency corresponding to a full rotation of a blade
Jet engine Modulation (JEM)

Advantages:

- Small and simple data base
- Short time-on-target
- Each aircraft has a unique engine type

Drawbacks:

- Dependence on the aspect angle
- Large signal-to-noise ratio
- Low reliability of classification results
(ii) High Resolution Radar Range Profiles (HRR)

- Responses of the aircraft scatterers are projected on the radar line of sight
- Some partial information on the geometry of the target might be extracted
Transmitted Radar waveforms, in practice

1. ‘Chirp’ (Linear Frequency Modulation, LFM) pulses, as used, from example, from the well-known TIRA radar, in Bonn, Germany.
2. Stepped Frequency Waveform (SFW), where the carrier frequency changes linearly from pulse to pulse, as shown below (in most cases, in this presentation, we will concern about SFW).
Selection of several radar parameters

- The radar range resolution equals to:
 \[\Delta R_N = \frac{c}{2B} \]

- The unambiguous range interval equals with:
 \[R_u = \frac{c}{2\Delta f} \]
Radar waveform parameters

- In order to avoid circular correlation effects:
 - unambiguous range interval: $R_U = 2R_T$

it is required:

- unambiguous range interval: $R_U = 2R_T$
High Resolution Radar Range Profiles (HRR)

Advantages:
- Classification is possible at any aspect angle
- Short time-on-target

Drawbacks:
- Strong dependence of the shape of the aircraft on the aspect angle
(iii) Inverse Synthetic Aperture Radar (ISAR)

- Use of information in both down-range direction (received echoes from target scatterers in time domain) and cross-range direction (Doppler information)

- Two-dimensional (2D) images of the aircraft
Traditional Method to generate a 2D ISAR image from real (raw, complex) Radar Data

For the SF transmitted waveform shown here, take one 1D-IFFT in the range direction and one 1D-FFT in the cross range direction (sequentially).
ISAR imaging

- ISAR imaging = spotlight SAR imaging
ISAR imaging

1. Cross – range resolution
 Integration azimuth angle (ψ)

2. Range Resolution
 Total bandwidth of the emitted waveform

$$\Delta r_c = \frac{c}{2 \omega T f_o} = \frac{\lambda}{2 \omega T} = \frac{\lambda}{2 \psi}$$

$$\Delta r_s = \frac{c}{2 N \Delta f}$$
Inverse Synthetic Aperture Radar (ISAR)

Advantages:
- More detailed information on the target geometry is extracted
- 2D-ISAR images are suited for human interpretation

Drawbacks:
- Target motion should have a rotational component perpendicular to the line of sight
- Large time-on-target
- Complex and expensive motion compensation
- Large data set of signatures
Comparison of techniques for NCTR

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>JEM</td>
<td>Short time on target</td>
<td>Aspect angle restrictions</td>
</tr>
<tr>
<td></td>
<td>Simple target data base</td>
<td>Not suitable for large distances</td>
</tr>
<tr>
<td></td>
<td>Fast classification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mature technology</td>
<td></td>
</tr>
<tr>
<td>HRR</td>
<td>Relatively short time on target</td>
<td>Large data set of signatures</td>
</tr>
<tr>
<td></td>
<td>Applicable on all aspect angles</td>
<td></td>
</tr>
<tr>
<td>2D-ISAR</td>
<td>Detailed object information</td>
<td>Depends on target motion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complex motion compensation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long time on target</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Large data set of signatures</td>
</tr>
</tbody>
</table>
Standard Motion Compensation Techniques for ISAR imaging

Step 1: Align the range profiles, as obtained in the ‘slow time’ (i.e. from burst to burst) / a procedure usually called ‘Radar Tracking’

Step 2: Choose, with some criterion, a ‘prominent scatterer’, and assign to its phase the value zero (0) for all range profiles, by appropriate phase corrections ['Doppler Tracking' / this takes care of the time – varying Doppler shifts of the scatterers from burst to burst, i.e. in the ‘slow time’].