Real Time Improvement of Orbits of Space Debris by Fusing SLR and Astrometric Data Acquired by a Night–Tracking Camera

E. Cordelli, J. Rodriguez, P. Schlatter, P. Lauber, T. Schildknecht
Astronomical Institute, University of Bern, Switzerland

21st International Workshop on Laser Ranging
5–9 November 2018
Canberra, Australia
Table of Contents

1. Motivation

2. The Night-Tracking Camera
 a. Hardware
 b. How does it work
 c. Output

3. Observation Results
 a. Active Satellite – JASON 3
 b. LEO satellite – TOPEX
 c. MEO satellite – Glonass

4. Conclusions & Outlook
Motivation

- Improvement of SLR observations
 - Satellite acquisition time
 - Number of observation per NPT
 - Pass Observation rate
 - Successful satellite acquisition (by visual inspection)

- Improved orbit determination through fusion of range and angular data (especially for short observation arc)
- Attitude studies based on light curve and laser light curve and range variation analysis
- Retrieving angular measurements for fast moving objects with small field of view (no reference stars for astrometry)
- Synchronous acquisition of measurements for attitude and orbit determination
The Night-Tracking Camera

- **ZIMLAT Telescope**
 - 1-m Aperture Ritchey–Crétien
 - Coudé focus for Laser
 - Nasmyth Focus for tracking and CCD cameras

- **Neo 5.5 sCMOS Camera**
 - 5.5 megapixel sensor, 6.5 μm pixels
 - 22 mm diagonal field of view
 - Rolling and Global Shutter
 - Rapid frame rates
 - 30 fps over extended kinetic series
 - Burst to memory at 100 fps full frame

- Integration of the new camera into the SLR system
- Development of observation and tracking software
- Development of a quasi–real time analysis pipe

Credits: Oxford Instruments 2018
The NightCam at Work

NightCam Capabilities

- Set up camera parameters

- Target Acquisition
 - Target Position w.r.t. Laser Position
 - Azimuth/Elevation ephemeris correction handling
 - Storing of Images with telescope data (pointing directions and measurement epoch)

- Synchronous observations acquisition
 - Azimuth/Elevation
 - Range
 - Light curve

Target: TOPEX Date: 2018/10/19
Initial Ephemeris offset: ~68 arcsec
NightCam Output

Date: 2018/09/25
From: 22:03 UTC
To: 22:13 UTC
Target: TOPEX
Exp. Time: 0.1 s

*OBS–COM Difference from expected (given by ephemeris) and measured time of flight of the laser pulse.
NightCam Output

*OBS-COM Difference from expected (given by ephemeris) and measured time of flight of the laser pulse.

Date: 2018/10/19
From: 18:54 UTC
To: 19:03 UTC
Target: ENVISAT
Exp. Time: 0.1s
What can we do with these data?

- Light curve analysis → Attitude determination
 - Spin axis direction
 - Rotation period

- Ranges
 - Orbit Determination/Improvement (especially for short observation arc)
 - Attitude Determination

- Azimuth, Elevation → Orbit Determination/Improvement
 - Need to be validated
 - Error Estimation
 ⇒ Ephemeris Comparison

⇒ YES, we can improve it!!!
Orbit Determination Result: JASON 3

Orbit determination performed with only angular, only ranges, and merged measurements.

Comparison w.r.t. CPF Ephemeris.

Date: 2018/09/25
From: 21:47 UTC
To: 21:57 UTC
Target: JASON 3
Exp. Time: 0.1s
Orbit Determination Result: JASON 3

Orbit determination performed with only angular, only ranges, and merged measurements.

Comparison w.r.t. 2nd and 3rd Satellite pass.
Orbit Determination Result: TOPEX

Orbit determination performed with only angular, only ranges, and merged measurements.

Comparison w.r.t. 2nd Satellite pass.

Date: 2018/10/19
1st Pass From: 17:35 UTC To: 17:40 UTC
2nd Pass From: 19:31 UTC To: 19:35 UTC
Target: TOPEX
Exp. Time: 0.1s
E. Cordelli, Real Time Improvement of Orbits of Space Debris by Fusing SLR and Astrometric Data Acquired by a Night Tracking Camera, 21st ILRS Workshop, Canberra, Australia, 5-9 November 2018.

Orbit Determination Result: GLONASS

Orbit determination performed with only angular, only ranges, and merged measurements.

Comparison w.r.t. 2nd obs. series. of Satellite

Date: 2018/10/19
1st Obs. Series From: 21:47 UTC To: 21:59 UTC

Target: GLONASS 91025B

Exp. Time: 0.7s
Conclusions

Summary

- Integration of the new camera into the SLR system
- Development of observation and tracking software
- Real time orbit improvement via ephemeris correction
- Quasi real time orbit improvement using short arc data fusion
- Simultaneous observation for orbit and attitude determination of space debris
- Validation of estimated orbit via real measurements

Interesting outcomes

- LEO Orbit determination without astrometric data reduction
- Possibility of SLR tracking of LEO and MEO defunct satellites
- Generation of ephemeris which allow target reobservation in the next pass
Outlook

Next Steps

- Improvements of Azimuth, Elevation accuracy
 - Laser Pointing Model

- Correction improvements from Azimuth, Elevation to Along-, Cross-Track

- Automatization
 - Object recognition
 - Ephemeris Correction
 - Analysis pipeline
 - Orbit determination/improvement
 - Ephemeris Generation

- Active Real time tracking of object with poorly known or unknown orbit (Stare and Chase)

- Day time application?!
Thank you for your attention!
Back Up Slide
Derivation of Pointing Model

To apply corrections to satellite ephemeris, we needed to determine:

- The Azimuth Elevation direction in the camera system
 - Number of reflections
 - Camera orientation
 - Derotator position
- The pointing of the laser on the camera
 - Telescope pointing direction
 - Derotator position

Star fields for camera orientation
Derived from images when laser hits the target
Improvement of the Pointing Model

- Temporary Solution → Average Laser coordinates on chip
- Optimal Solution → Modelling of the wobble due to telescope pointing direction → To be implemented
91025B–X6: 2019/10/19 1st part of Obs.

Date: 2018/10/19
1st Obs. Series
From: 21:47 UTC To: 21:59 UTC
2nd Obs. Series
From: 22:18 UTC To: 22:25 UTC
Target: GLONASS 91025B (X6 Internal)
Exp. Time: 0.7s