Toward high-rate on-time mm-accurate SLR at Stafford, Virginia

Jake Griffiths, C. Font, C.I. Moore, F. Santiago, R. Smith, A. DeRieux, J. Ghiorzi, L. Thomas

1Naval Research Laboratory, Washington, DC 20375
2R&M Technologies

21st International Workshop on Laser Ranging – 5-9 November 2018 – Canberra, Australia
• Enable NRL to participate in ILRS and other Laser Time Transfer (LTT) experiments, including NASA’s CHOMPTT and ESA’s ACES/ELT
 - leverage COTS equipment and technological advances from ILRS to date

• ACES/ELT
 - launch to ISS: expected (2020?)
 - ultra-stable atomic (Cs fountain + H-maser) clock ensemble¹,²,³
 - microwave link¹⁰ for ACES primary time transfer mode
 - 532nm laser link¹² for optical timing experiments
 • gated detector: laser pulse on target within 100ns

• Objectives of optical link payload:
 - evaluate limits in comparing precision ground clocks via LTT utilizing ACES timescale
 - improve atmospheric propagation models by comparing refractive index to microwave propagation delay
 - optically derived precision orbits for ISS

Source: http://www.esa.int
NASA Ames (bus)
- Univ. of Florida (OPTI)
- NRL & Univ. of Florida ground stations
- Launch expected late 2018

Anderson et al., in press (Adv. Space Res.)
Telescope: Brashear 1 meter telescope
- All reflective design
- F#: 89
- Focal plane: @12.640 m
- Slew rates:
 - 15 degrees/sec slew rate (elevation)
 - 25 degrees/sec slew rate (azimuth)
- Pointing accuracy: <2 arcsec RMS all sky

Laser: Lumentum PicoBlade
- Ultra-short pulses, passively stabilized
 - ~28 ps (532 nm)
 - ~34 ps (1064 nm)
- Single-shot to 20 kHz capable
- 82 MHz oscillator (syncs to high precision external clock)
Rx detector: Compensated Single Photon Avalanche Detector (C-SPAD)
- Si APD
- 200 µm active area
- Quantum Efficiency: 40%
- AR coated for 532
- Accepts 12 mm diam beam
- FOV: 1 degree
- Active quenching circuit
 • Time walk compensation < ±10 ps

Optical train:
- Custom optical elements were designed at NRL for better and efficient coupling of the laser system into the telescope
- High quality optics (mirror, polarizers, lenses) were acquired for system efficiency

PESO Consultant Ltd.
Detector gating: Graz Range Gate Generator
- medium Resolution Event Timer and range gate generator
- 5ns resolution in time stamping
- 500ps resolution programable range gate generator
- accurate enough for generating range gates, range residuals, and real time plots for displays

Event timing: New Picosecond Event Timer (NPET)
- supports 2kHz epoch timestamping
- <0.9ps timing jitter per channel
- <0.5ps timing drift per Kelvin
- <0.1ps/hour timing stability
- requires spectrally clean clock signal

PESO Consultant Ltd.
New Reference Timing Signals

- High precision atomic frequency reference
 - Microsemi H-maser w/ LPN option
 - AOG used for steering to UTC
 - Dedicated SMF-28e+ host <-> LTT testbed
 - ~750m one-way
 - Microsemi 6511 (coarse time-of-day)
 - TWTFT over fiber with CHRONOS 6501
 - <20ns performance
- Linear Photonics On-time PPS to LTT testbed
 - PPS time marker aligned to UTC(USNO)
 - 276ps (±<1ps) static offset Tx/Rx
- Linear Photonics DiLink to LTT testbed
 - delivers H-maser 5MHz frequency reference
 - Uncompensated for fiber delay variations

- Initial integration complete August, 2018
- Ongoing monitoring of signals at H-maser and LTT testbed
Transferring Timing Signals to LTT Testbed

NRL CHRONOS Timing Facility

- 6511 IRIG used for time of day
- LP DiLink
 - uncompensated for fiber path delays
- LP On-time PPS performance
 - Tx – Rx offset: 276ps
 - over ~1500m roundtrip
Time & Frequency Distribution

- **Linear Photonics Timelink**
 - On-time PPS Rx
 - 276ps (±<1ps) static offset Tx/Rx
 - DiLink Rx

- **Spectra Dynamics, Inc.**
 - PPS generator
 - timing reference for event timers
 - aligned to UTC(USNO) within ~250ps
 - low-noise frequency cleanup osc.
 - 100MHz output for event timers
 - 10MHz output for synthesizer
 - low-noise frequency synthesizer
 - 82MHz for laser CLX-1100
 - CLX-1100 measures laser oscillator jitter wrt input 82 MHz = ~0.10ps

- **Microsemi PPS and RF Amps**
 - timing source for legacy SLR systems
Laser Safety Infrastructure

New interlock (complete) and radar (late 2018)

Callout boxes indicate all components in the LHRAS
NRL LTT Testbed Optical Layout

- Class 1M
- 50 μrad 1/e²
- HW divergence
• **Transmitted beam**
 - Collimated from 1 mm to 12 mm diameter
 - Optics for matching telescope F# w/ 100 μrad FW divergence
 - Folding mirrors for fine alignment with telescope
 - Polarizing optics to separate Tx signal from Rx signal
 - Periscope insertion into telescope optics

• **Received beam**
 - Thin file polarizer splits return light into Rx arm path
 - Collimated to 12 mm diameter
 - Return photons directed and aligned onto Rx detector (C-SPAD)
Initial design for separating Tx and Rx optical beam by polarization components

Polarization components measured at detector position:
- 85% vertical
- 7% Horizontal
NRL LTT Optical System Characterization

- **Test Performed to the system:**
 - Initial collimation: **GOOD**
 - Optical elements where tested at NRL to characterize their optical performance:
 - **Current loss:** ~30% (will be improved by fixing collimation size)
 - **Total expected loss:** ~ 15 to 20% (transmitting)
 - System alignment with telescope: **GOOD**
 - Polarization states maintain through the system: **GOOD**
 - 92% linear polarization at the detector
 - Receiving arm focusing efficiency: **GOOD**
 - System backreflections: **OK**, except >1 nJ from telescope covers (sun avoidance)

- **Tests to be performed:**
 - Rx effective FOV
 - Collimation out of the telescope

Receiving arm test, using a 75 mm fl lens

- At the telescope
- 5.3 mm from system focus
- At system focus

1° retros (4)

~ 385 μm diam

~ 130 μm diam
Backscatter Suppression

- Optical Chopper Blade implemented to suppress on-axis backscatter
- Custom blade designed to maximize opening for Rx signal, and protecting detector while Tx w/ gate open
- Located at focal plane on Rx leg
- Custom design:
 - sync with laser fire while modifying blocking duty cycle
 - 16% duty circle, blocks 16 µsecs while sync @ 1kHz,
 - blades sized to block area of detector while adding enough buffer to keep protecting in case of signal jitter
 - tested to sync up to 1.5 kHz
 - Inner and outer ring made to maximize opening duty cycle

Custom optical chopper blade, designed and built at NRL
Step #1: Initial search

- Two-modes: ground calibration and satellite
- For each 10-min interval, i,
 - determine direction, α_i, that minimizes width of a high-resolution histogram and contains bin with maximal number of data points
 - select SLR measurements for residuals that fall within narrow band along direction α_i
 - thickness of the band is a function of system jitter and target signature

Step #2: Outlier rejection

- Iterative weighted least-squares of regression function to find signal photons
 - all data points are included
 - data found in Step 1 (cyan) used for initial weighting
 - subset of initial weighted data points remain (blue) after iterative fitting and outlier rejection
 - solution converges when no outliers remain
 - full-rate signal photons (magenta) are all remaining data points
Ground Targets and New Local Tie Survey

- Completed in 2016 by NOAA NGS
- Tie between ground ranging targets and NRL telescope realized via AXIS software (Geoscience Australia)
Ground Target Testing

Delay [ps]: 114068.0
Drift [ps/s]: -0.008

Compares to calculated nominal delay based on:
- optical path length (zemax)
- measured cable delays
- electronic signal rise times

Validate stability (in prog)
• Aim to enable NRL participation in ILRS and other LTT experiments
 - initial effort engineering to design 532nm system, requirements driven by ACES/ELT
 - study potential new methods to characterize, monitor, compensate for system delays
 - evaluate limits of LTT technique

• Initial 532nm optical layout designed and integrated
 - will test polarization-based attenuation on Tx and Rx legs for controlling flux on C-SPAD
 - need to verify 100 µrad divergence
 - need to improve backscatter suppression for >1.5 kHz rates

• Initial integration of electronics and timing systems complete
 - finish testing s/w interfaces with laser, NPETs, and timing systems
 - develop technique for controlling laser fire time

• Developed a new tool for extracting full-rate signal photons
 - add simplified user interface for low-latency post-processing (and reanalysis)
 - verify accuracy of data products generated using the tools

• Calibration and validation
 - classical methods used for ongoing system checkout and characterization
 - interested to find/explore alternate methods
Questions?