GALILEO ATTITUDE DETERMINATION

Attitude determination of Galileo spacecraft using high resolution kHz SLR

Michael Steindorfer, Georg Kirchner, Franz Koidl, Peiyuan Wang
Space Research Institute, Austrian Academy of Sciences

Erik Schönemann, Francisco Gonzalez
ESA/ESOC, Darmstadt, Germany / ESA/ESTEC, Nordwijk, The Netherlands
ESAs project within Alcantara Initiative:
Verification of mm SLR measurements to Galileo satellites by variation of laser beam polarization plane orientation

Outline / project goals:
• mm SLR measurements to Galileo varying the laser beam polarization
• Ground based range measurements to ESA IOV spare retroreflector panel
• Transfer of know how Austria -> Argentina: build-up of AGGO SLR station
LASER BEAM POLARIZATION

- Laser beam: fixed linear polarization at laser table
- Polarization varied according to orbit
 - along satellite track
 - across satellite track
 - circular polarization
- Principle behind
 - $\lambda/2$ wave plate (rotatable): set arbitrary linear polarization plane
 - $\lambda/4$ wave plate (switched in and out): linear -> circular

$\lambda/2$ wave plate rotator

$\lambda/4$ wave plate switch
Certain Glonass satellites (e.g. Glonass 115 (NORAD 33467 / 2008-067B))
- Differences of up to 9 mm between two polarization states (along, across)

Project goals -> Galileo satellites:
- Determine laser polarization induced offset / influence of clocking quality of Galileo panels
- Statistical evaluation of a large data set with different pass geometries

PRE-Alcantara Results

green ... polarization along satellite track
red ... polarization across satellite track
x–axis ... elevation [°]
y–axis ... Observed–Minus–Calculated [mm]
Results: polarization plane switching

- Full rate data of Galileo103: x-axis: Elvation [°], y-axis: O-minus-C residuals [mm]
- Polarization: Red: linear along track, green: linear across track, cyan: circular)

Offsets between normal points: < 2 mm (close to SLR accuracy)

Low elevations: tilt of panel --> increased jitter between photons from front and back of panel

9 cm @ 21.6° elevation
4 cm @ 74.1° elevation

Maximum jitter: 10 cm @ 12.4° tilt: (panel width: 46.8 cm)
13 Galileo satellites / 27 hours observations
1600 1-minute normal points

Y-axis: Range difference of normal points at different polarization states (across-along, across-circ)

- **No trend visible** -> averages to zero -> **good quality of ESA panels**
- Jitter of normal point difference dependent on elevation (incidence angle on panel)
- Jitter increases from ±1 mm (large elevations) to ±4 mm (low elevations)
 - Possible explanation: far field diffraction patterns of CCR separate further the larger the incident angle
 - Different linear polarizations rotate the whole field diffraction pattern
 - Different position within far field diffraction pattern --> retros with a certain clocking contribute more
 --> slightly different reflection point --> offset / jitter between normal points

Polarization and far-field diffraction patterns of total internal reflection corner cubes; Murphy, Goodrow; Appl Opt 53 (2); 2013
• ESA provided a spare IOV panel to perform ground based measurements
• Panel was mounted on an astronomical tripod
• Panel rotatable between -18° and +18° (around azimuth axis) / 0.1° steps
• Panel first time out of a clean room -> we asked ESA first :-)
• Remote location 32 km outside of Graz (Absetzwirt)
Range measurements to Absetzwirt (analyze full rate data): y-axis: range [m], x-axis [seconds of day]

- Panel: 0° laser beam incident angle alignment of: using four 45° mirrors, 4 orthogonal screens
- Panel tilt angle around azimuth axis: increased from 0.0° to 18° (laser beam incident angle)
- Range jitter increases (photon statistically from front or back of tilted panel)
- True 0° incident angle (minimum jitter) 0.3° / 1.3° after mechanical 0° alignment (alignment errors)
- 11 clearly distinguishable tracks which separate from each other -> 11 retroreflector columns
Histogram analysis

- Histogram through range data (at incident angles above 10°)
- Number of photons / 500 µm bin at different ranges; Fitted with a smoothing function (red)
- Peak distance calculated (autocorrelation)
- Incident angle calculated from peak distances (42 mm CCR distance)

Compared to mechanical (red, dashed) incident angle alignment offset:
- 0.3° (green dotted, measurement day 1)
- 1.3° (blue dotted, measurement day 2)
Comparison: Absetzwirt vs. Galileo 103

Comparison to space-based measurement to Galileo 103

- SLR station Graz seen from Gal. ref. frame: 11.37° elevation / 90° azimuth (Yaw steering)
- From histogram: CCR column distances -> incident angle re-calculated: 11.38°
- Very good agreement: Unique method to verify the attitude of CCR panels

Peak heights: Galileo vs. spare panel -> clocking orientation contributing more to measurement
Laser beam polarization switching
1600 1-minute normal points to 13 different Galileo satellites
Very good clocking quality of Galileo panels
Maximal offsets between polarizations of 4 mm
Spare ESA retroreflector panel mounted at 32 km distance
Different columns of retroreflectors clearly visible
From distance offsets tilt angles calculated
Method to verify attitude of Galileo satellites < 0.1°
Satellite laser ranging (SLR) on astronomy telescope.

Quantum cryptography.

SLR station Graz.

Alcantara.

Andromeda galaxy (not a target yet ...)

Satellite laser ranging on astronomy telescope.

Thank You!!!