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Calibration
(JK, TM, SS, US, NC, JB)

APOLLO installed an Absolute Calibration
System (ACS) in 2016 based on an 80 MHz
10 ps laser locked to a cesium standard
(CQG 34, 245008). In 2018, visiting
instrumentation from Wettzell validated
calibration fiber delivery at the few-ps level.

12 m fiber

TWTT cable

100 MHz clock

ACS box

__— / \\heateron
180314-040041; Fiber Variation/ N\

T variations
in ACS box (°C)

Pulse Delay (ps)

6.79e-08
5 6 7 8 9 10 11 12 13
hour

Variations are well under 1 mm (6.7 ps).
Differential use of the ACS means we only
care about variations over 5-10 minute
periods. We did find a thermal dependence
of the absolute ACS pulse times, which we
then were able to suppress, as seen below.
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The ACS 8x clock multiplier was thermally
susceptible. Better temperature regulation
and insulation keeps drift below millimeter
scales in relevant 5 minute intervals.
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Gravity Signals
(YL, T™)

Numerically integrating the Einstein Infeld
Hoffmann (EIH) Eg. of motion, we explore
the imprints of physical influences on the
lunar orbit. A least-squares fit removes
distracting changes to initial conditions,
leaving an irreducible physics signal, Ar(t).
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The EIH package can be run as a whole, as
individual pieces (a—l), or decomposed into
B, 7, or ‘relativistic’ (f=y=0) terms. The table
shows example synodic (29.53 d) signals.
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Full EIH run: Ampl = 0.10 m; Phase = 11.1°

Summing individual irreducible series of a—|
or f3/y/Rel matches the full EIH integration.
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Example spectra of Arg,(t) and Ar,,(t);
where e+i represents gravitomagnetism.
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Model Uncertainties
(FN, NJ, JC, TM, RR, IS, JB)

Observed-minus-calculated (O—C) residuals
for APOLLO tend to exceed estimated data
uncertainties by factors of ten or more, for
all models. Formal parameter uncertainties
therefore tend to be unrealistically small.
Scaling factors are necessary. Here, we
systematically scale errors based on two
dlfferent bootstrap resampling methods.

This resampled set effectively re-weights the NPs,
while preserving any data systematics
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Two different bootstrap methods create alternate

EUERAY  realities” based on plausible resampling of the real
data; llustrated above and below this nominal case:

Bootstrap;
Resample Residual

This resampled set keeps all observation times
2= and data weights (error bars), but shifts the
measurement in a manner consistent with the
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A multitude of such “fake,” but plau5|ble
data sets can be generated and used to
estimate parameters in the model. The
resulting distributions of parameter
estimates suggest realistic uncertainties.
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Few-millimeter uncertainties are more likely
realistic than the 0.16 mm formal error.



