Laser link experiment between Hayabusa2 laser altimeter and SLR stations

H. Noda1, H. Kunimori2, T. Mizuno3, H. Senshu4, N. Ogawa3, H. Takeuchi3, C. Moore5, A. Pollard5, T. Yamaguchi3, N. Namiki1, T. Kase6, T. Saiki3, Y. Tsuda3

1NAOJ, 2NICT, 3JAXA, 4CIT, 5SERC, 6NEC

Thanks to: Hayabusa-2 spacecraft and ground station operation teams, NASA DSN for TT&C microwave link, and Toshi. Otubo for discussion on prediction files
Contents

• purposes of experiment with achievements

• experimental setup

• results

• summary
Results at a glance

i) Detection frequency w.r.t. S/C scan
-> Rx. boresight determined

Hayabusa2 laser altimeter “LIDAR”

ii) Received intensity by LIDAR with receiver gain / ground pointing changes
-> confirmation of detection
- link budget

iii) Pulse intervals
-> clock freq. adjustment
Purposes of experiment / achievements

• Engineering demonstration
 – synchronized two-way (transponder) -> uplink only
 – clock frequency transfer -> OK by using pulse intervals

• Performance check
 – link budget -> OK for uplink
 – telescope alignment -> Rx. tel. w.r.t. S/C

at interplanetary distance

-> the third example farther than lunar distance
 (after MESSENGER and Mars Global Surveyor)
Hayabusa2 LIDAR

Mizuno+ 2016 SSR

<table>
<thead>
<tr>
<th>Rx telescope (> 1 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>diameter</td>
</tr>
<tr>
<td>FOV</td>
</tr>
<tr>
<td>detector</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tx telescope</th>
</tr>
</thead>
<tbody>
<tr>
<td>divergence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>wavelength</td>
</tr>
<tr>
<td>repetition</td>
</tr>
<tr>
<td>energy</td>
</tr>
<tr>
<td>pulse width</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>total mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ranging</td>
</tr>
<tr>
<td>-transponder</td>
</tr>
<tr>
<td>-dust detection</td>
</tr>
</tbody>
</table>

2014.12.3 Launch
2015.12.3 Swing by
2018.06 Arrival
... Observation ...
2019.12 Departure
2020.12 Return

target asteroid
162173 Ryugu
in Transponder mode,
- two pulses can be detected in 1 [s]
- extra 1 [s] needed for data acquisition
- the pulse intervals are sent as telemetry data for onboard clock calibration
SLR stations

16 days in total
- Oct. 3d
- Nov. 5d
- Dec. 8d

Oct. & Nov.

<table>
<thead>
<tr>
<th></th>
<th>NICT Koganei (JPN)</th>
<th>Mt. Stromlo (AUS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>transmitter</td>
<td>Q-SW Nd:YAG</td>
<td>Q-SW Nd:YAG</td>
</tr>
<tr>
<td>laser wavelength, nm</td>
<td>1064</td>
<td>1064</td>
</tr>
<tr>
<td>Pulse energy, J</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>Pulse width, ns</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Beam divergence, arcsec</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Repetition rate, Hz</td>
<td>10</td>
<td>170</td>
</tr>
<tr>
<td>receiver</td>
<td>InGaAs APD-array</td>
<td>IR enhanced Si-APD</td>
</tr>
<tr>
<td>Telescope diameter, m</td>
<td>1.5</td>
<td>1.8</td>
</tr>
</tbody>
</table>
S/C operation and data

• **Scanning operation** in transponder mode
 – to find out the direction of boresight w.r.t. S/C frame
 – step size = 1 mrad to cover 1 x 1 deg.2, duration 40[s]
 – max. 17 shots were detected within a step
 – detection flags & pulse intervals were downlinked via microwave link

• **Pointing operation** in ranging mode (Dec.19)
 – received intensities w.r.t. ground telescope scan /gain
NG in Oct. and Nov. from JPN and AUS
OK in Dec. from AUS

RESULTS
Dec 11,#1-92
M2 offset 400um (FOV=18”)
Distance: 3.3M km
Rx footprint: 5,000 km

Dec 15,#1-158 (#92-last cloudy)
M2 offset nominal(FOV=12”)
Distance: 5.0M km
Rx footprint: 7,500 km

Boresight direction is almost determined within scan step size.
Rx. intensity by LIDAR

Received Intensity Data on 19 Dec. in Range Mode

- Changes of intensity in accordance with gain change / offset pointing
- Evidence of detection of ground laser pulses (not background emission etc.)

Enhancement due to ground telescope offset pointing
Pulse intervals

time-series pulse intervals
top : LIDAR
bottom: ground laser
(fixed offset subtracted)

Ground/LIDAR Pulse Interval

histograms of pulse intervals
(onboard clock adjusted)

bar : LIDAR
stair-step : ground laser

onboard clock frequency adjustment
~ 2 kHz (6 ppm of 300 MHz)

Onboard clock frequency was successfully adjusted by pulse intervals on the ground laser.
Summary

- Uplink one-way established at 6.6 M km
- Downlink signals not found
- Rx. boresight determined
- Clock frequency adjusted with pulse intervals
- Hayabusa2 became the third example of laser link farther than lunar distance

“Earth, Planets and Space” in revision