Trials and limits of automation: Experiences from the Zimmerwald well characterized and fully automated SLR–system

P. Lauber, M. Ploner, M. Prohaska, P. Schlatter, P. Ruzek, T. Schildknecht, A. Jäggi

Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Astronomical Institute, University of Bern, Switzerland

20th International Workshop on Laser Ranging, October 12th, 2016, Potsdam
Hardware Communication Layout

- Simple' replaceable (hard-/software)
- Old but well-defined fixed APIs
- Graphical or unknown UI
- or OS dependency
- or non-general-purpose H/S
- or very bad connection/...

Day and night
Automated Devices

- ~165 Devices
 - Moving Devices: Matching Lens, Divergence Optics
 - On/Off Devices: Laser Shutter, Tube Fan
 - Read-only Devices: Humidity Sensor, Maser In Voltages

- Design Rules:
 - MTBF: long lifetime,
 - less maintenance
Example: Some Devices...

- Piezo: electrical tild mirror
- Lens1
- Divergence Optics
- Lens2
- Beam Alignment Screens
- Control Unit
- CM_Shutter

Pierre Lauber: Trials and limits of automation: Experiences from the Zimmerwald well characterized and fully automated SLR-system

20th International Workshop on Laser Ranging, October 12th, 2016, Potsdam
Software Maintenance

- **Linux is your friend here**
- **Philosophies**
 - Upgrading old, in order to maintain automation
 - Writing new, which automates new things, e.g. Envisat data processing
- ~300,000 lines Fortran77 source code, under revision control, some «minor» not
- **Design Rules:**
 - Less maintenance, use (**IX) standard interfaces
 - Simple expansible
- **BTW:** Use host- and usernames carefully...

Remote Screen in xterm

Using terminal emulator:
Remote Screen in Smartphone

Not yet displayed correctly (interferes with virtual kbd), but kbd input works really!
Software Porting

Motivation:
- Old code has less bugs!
- Development very bad under DOS

Software interfaces:
- Text terminal/keyboard-based,
- TCP/IP network, only one X11 application (pgplot) for residuals,
- Byte code protocols (e.g. Modbus) network

Hardware interfaces:
- EPP, ISA
- Video graphics: If uses only text: API adapted to use ncurses calls
PC Hardware Maintenance and Porting

Idea: hardware redundancy, no complete new system, replace single components only

PCs Maintenance (copying):
- Station Control: made a virtual machine
- DAQ: almost cloned, lacks a print card
- Telescope: cloned
- Laser: program copied onto new PC and OS (Windows)

Porting DOS to Linux
- ISA port/memory mapped access seem to work: first time as user root, or Linux driver
- last interesting tests in real environment come up... difficult: timing restrictions if any

Btw: Mixed experiences with new (all-in-one) SPS
Limits of Automation

- **frequent**
 - optics cleaning
 - replacing: fans, power supplies, batteries

- **rare**
 - receive path: Fabry– Pérot adjustment
 - Maser frequency drift correction
Night Tracking Camera

- Like in the earlier days of SLR: Point to HEO sat., between laser pulses take a photo, evaluate photo: find HEO sat., calculate deviation, move telescope directly to sat. position
- Digital Camera Neo sCMOS (Andor) evaluated: should fit purpose
- Exposure Timing works
- Light shade pipe required
- Laser light filtering: Additional filter for IR too seems to solve
- Implementing Software of image processing continues...
- Analogue technique was so easy...
Safety of Low Energy Tracking

... should be fully automated and should be fully secure

- Targets: ISS (ELT: 0.1mJ), Sentinel–3A, ...

- for standard tracking: Why do we need so much energy at all? RegenOut 0.4mJ@532nm and 100Hz enough for all LEOs incl. Lageos (see also other publications...)

- currently, everything depends on the satellite name only
 - one software problem should not affect safety!:
 - second software variable from second data channel required? (like Go/NoGo–Flag)

- Energy measurement in real-time: Ulbricht Sphere + Photo Diode: less precision compared to thermal sensor: to be checked again

- divergence control seems to be reliable measurements continue when at 8mJ again
Excursion: Frequency Stability for ELT

- SLR Zimmerwald is phase locked to the Maser since 9.8.2016, 15:20 UTC
- Maser frequency drift is corrected manually: 1PPS Difference of GPS to the Maser is at the measurement precision of the GPS-receiver (res30ns/acc165ns)
- METAS (Time and Frequency Lab, located 8 km from station) checks for optical link between its Caesium fountain and station
Safety for European Laser Time Transfer (ELT)

Paper: “..ELT and Laser Safety for the ISS”, U. Schreiber et al., 2013

Some checks for our system specific implementation:

- **Easy to program:** For ISS, switch CM_SHUTTER (located after energy measurement) ON (to open) if laser energy is less than...

- **Mains Power Off/On Scenario and UPS (to be checked again):**
 - Control–PCs have UPS, **UPS can work contrary to safety**
 - laser power supply and chiller have no UPS,
 - Shutters should be closed by gravity (currently by springs)

- **Micro switches at Divergence Optics:** seems to be a good idea

- **Amplifier gain reduction:**
 - Delay between Amp pumping and laser pulse + polarizer attenuator might work
 - Switching off Post–Amps: Amps not at thermal operating point: For fully automated operation, have to be back in stable operation condition after ISS passage: **switching off Amps might be a bad idea**
New Systems

Idea: New technology: Carbon–Fibre–Tube: high stiffness, cheaper

- Used for Space Debris, not yet for SLR, ok, equatorial mount is bad for SLR …
- other motion controller: completely new, first version software, some minor source code imported from old system
- Camera readout “PCs”: low power SBCs at telescope axis: Cubietruck, no mechanics (less maintenance): no active cooling/fan, flash/SSD memory, a lot of similar boards available: to be evaluated

- Satellite pointing at arc sec precision, development affected already others
- For SLR some is missing: e.g. Sun avoidance and timing precision!
Conclusion

- Think carefully about what you’re going to implement, for both hardware and software!
- A lot of work to do...

Thank you very much for your attention!
Two new Towers for new Telescopes

Tower1

Tower2
ZIMLAT–Telescope used for
- Geodesy (SLR) and
- Imaging (Space Debris)
- Hybrid design is difficult: optical compromise

ELT: Event–Timing: Dassault–Elements required?
We don’t want to buy such expensive devices...
Time Transfer Principle

good clock at ISS

optical links only

SLR station A

A-B Time Comparison at pico second level

Time Lab A

Time Lab B

SLR station B
Time–Transfer Principle (2)

- **Purpose:** Clock comparison by Time-tagging on space and ground
- **SLR in parallel**
- **Satellite site cannot be changed easily**

- **Purpose:** Clock comparison by Time-tagging on space and ground
- **SLR in parallel**
- **Satellite site cannot be changed easily**

On-Board Clock

Active Satellite

Timetags via RF-Downlink

Data-Server

Timetag-Correlation

SLR-Observatory

PD

Start

Eventtimer

Timetags
Excursion: The used Clock in Space

- **ACES (Atomic Clock Ensemble in Space)**
 - cold atoms in microgravity
 - Combination of cold Caesium clock and H-Maser:
 - test of PHARAO frequency stability $10^{-13}\tau^{-1/2}$ and accuracy 3×10^{-16}
 - test of SHM frequency stability 2.1×10^{-15} @ 1000 s

- **Applications in Fundamental Physics**
 - gravitational red-shift
 - drift in fine structure constant
 - anisotropy of light

Pharao prototype in CNES ZeroG Airbus (May 1997)
Time Transfer Predecessors: simple clocks

- **T2L2**: Operated by France, OCA and CNES
 - On-board Clock (USO) no longer State-of-the-Art
 - At end of lifetime
 - Since years precision evaluation: Allan–Variance: about 1 ps: optical transfer much better than RF ones
 Ground to Space section: 1 Triple data files tar-ball/ 1 day)
 - A lot of published papers

- **LRO**: Lunar Reconnaissance Orbiter (NASA), spacecraft around the moon (mission ended)
 - Requires enough energy, good weather conditions and schedule
 - Precision data NASA proprietary?
ELT: European Laser Time Transfer uses ACES

- **ELT difficulties:**
 - Operated by ESA via NASA via ISS–operators,
 - ACES launch scheduled for 2016,
 - Not yet operating,
 - ISS operated –2020?

- **Successor project of T2L2, in principal similar, new:**
 - improved detector–retro–package, ready for launch, pre–flight experiments and papers well–known
 - The best On–board Clock ever: ACES
 - ESA requirement: Ground–Data–Infrastructure ready before Hardware launch

- **SLR–Stations**
 - locked to Maser: Time comparisons can be made
ELT objectives (a copy from an ELT workshop..)

- **Clock Comparisons and Time Transfer**
 - Space-to-ground comparisons of clocks reaching a TDEV of 4 ps between 300 s and 10^4 s of integration time, better than 7 ps on the long-term
 - common view comparisons below 6 ps per ISS pass
 - Non-common view comparisons below 6 ps after 2000 s of dead time
 - Space-to-ground and ground-to-ground synchronization of clocks

- **Laser Ranging**
 - Laser ranging performance at the centimetre level per single shot (50 ps one-way)
 - Comparison of ranging techniques: one-way optical ranging, two-way optical ranging, microwave ranging
 - Analysis of atmosphere propagation delays