Update of the IfE LLR analysis model and new fit of relativistic parameters
LLR analysis at IfE – program LUNAR

- Goes back to mid of 1980ies (FESG, Munich)
- 2 main development phases: ~1985-2001 (Munich), since 2006 at IfE

- LLR-only analysis
 - ephemeris computation based on initial values from DE421 (Sun, planets, largest asteroids)
 - no further planetary data (optical, radar,…) included
 - ephemeris model: EIH equations of motion for all bodies as point masses
 - Earth orientation: IERS conventions
 - lunar orientation: Euler equations integrated together with translation including relativistic corrections (geodetic precession, Lense-Thirring)
 - additional forces due to inhomogeneous gravity fields, tides

- Combined analysis of solar system data and LLR planned in future (project in research unit FOR 1503)
Program updates at IfE

- Data reduction compared with IMCCE, good agreement
- Results show some room for improvements → updates in ephemeris computation needed
 - many modeling parts still from first development phase
 - simplifications (due to computation time reasons and accuracy requirements)
 - slight inconsistencies in force model (‘interactions‘) resolved
 - 3 parts: Earth-related, additional gravitational effects, Moon-related
Program updates at IfE – Earth related

- Earth tides – tidal acceleration
 - former model
 - single lag angle of time delayed tides
 - only Moon as tide generating body
 - effect on lunar translation
 - new model (according to DE430 ephemeris)
 - degree 2 tidal potential (~98% of tidal effect)
 - arbitrary tide generating body possible
 - 5 tidal time delays (2 estimated, 3 fix at DE-values)
 - effect on Moon:
 - via change in Earth‘s degree 2 potential coefficients on lunar translation and rotation
 - via acceleration on lunar translation
Program updates at IfE – Earth related

- Earth tides – tidal acceleration
 - some **results**
 - Sun + Moon as tide generating body
 - tides from Jupiter, Venus \rightarrow <0.1 mm in r_{EM} in 45 years
 - estimated time delays
 - diurnal τ_{21}=575 s (DE430: 636 s)
 - semi-diurnal τ_{22}=226 s (DE430: 219 s)

- Secular trend in C_{20}
 - several models tested (linear, quadratic)
 - best result in LLR analysis with model from IERS Conventions 2010 with
 \[\dot{C}_{20} = 2.6 \times 10^{-11} \text{ yr}^{-1} \]

Roy and Peltier (2011)
Program updates at IfE – additional gravitational effects

- Interaction of Sun/planets with Moon
 - former model – interaction of
 • planets with point-mass Moon
 • Sun with lunar degree 2
 - new model
 • planets with lunar degree 2
 • Sun with lunar degree 2+3
 - main effect on lunar rotation, e.g.
 • ~ 19 mm on surface from Venus
 • ~ 4 mm on surface from Jupiter
 (from ephemeris with equal initial conditions)
 - in analysis: residuals decrease ~0.1 mm on average
 → small effect but maybe needed in future
Program updates at IfE – additional gravitational effects

- Figure-figure interaction between Earth and Moon
 - former model
 - simplified version of degree 2 – degree 2 coupling
 - effect on lunar rotation considered
 - **new model**
 - coupling up to any degree/order of the gravitational field of Earth and Moon possible
 (Ilk, 1983)
 - effect on translation and rotation
 - **results**
 - improvement due to complete degree 2-degree 2 coupling
 - Earth degree 2 – Moon degree 3
 → some mm on surface
Program updates at IfE – Moon related

- **Rotation of deformable Moon**
 - former model
 - tidally deformed tensor of inertia only in rotation
 - no changes of potential coefficients (interaction with Earth, additional effect on translation and rotation)
 - no consistent core-implementation
 - **new model** (according to 2-layer model of DE430)
 - basis tide-free tensor of inertia, elements from
 - C_{20} (GRAIL)
 - C_{22}, dynamical β (estimated in analysis)
 - dynamical γ derived
 - core moments with DE-fixed values for inertia-ratio $C_{\text{core}}/C_{\text{Moon}}$
 and core flattening
Program updates at IfE – Moon related

- tidal + spin deformations on mantle tensor of inertia
 - Love number k_2 fixed on GRAIL-value
 - tidal deformation due to Earth (much larger than from Sun)
 - 1 time delay used
 → equations for rotation complete
 → coupled differential equations for core + mantle
 → coupling constant, initial rotation vector of core estimated

- degree-2 changes in potential coefficients from deformed mantle tensor
 → enters in computation of external forces (translation/rotation)
Program updates at IfE – Moon related

- Effect of new rotation-modelling on post-fit residuals, wrms (without core)

- Effect including core (which leads to improved libration modelling) on 2-way residuals
Results - wrms

- 1-way wrms, comparison with former model

```

```

- Further investigations
 - effects in longitude libration visible → empirical correction as in DE430
 - core flattening not yet estimated → possible effect on librations
 - tidal and lunar rotation modelling → room for improvement
Results – coefficients lunisolar nutation

<table>
<thead>
<tr>
<th>Periode</th>
<th>MHB2000 [mas]</th>
<th>old model</th>
<th>new model (two test cases)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.6 a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-17206.42</td>
<td>1.89</td>
<td>0.17 ± 0.17</td>
</tr>
<tr>
<td>B</td>
<td>9205.23</td>
<td>-0.22</td>
<td>0.05 ± 0.06</td>
</tr>
<tr>
<td>A''</td>
<td>3.34</td>
<td>-3.71</td>
<td>0.67 ± 0.14</td>
</tr>
<tr>
<td>B''</td>
<td>1.54</td>
<td>-1.35</td>
<td>0.28 ± 0.06</td>
</tr>
<tr>
<td>9.3 a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>207.46</td>
<td>-0.88</td>
<td>-0.94 ± 0.11</td>
</tr>
<tr>
<td>B</td>
<td>-89.75</td>
<td>-0.57</td>
<td>-0.55 ± 0.05</td>
</tr>
<tr>
<td>A''</td>
<td>-0.07</td>
<td>-1.74</td>
<td>-1.04 ± 0.11</td>
</tr>
<tr>
<td>B''</td>
<td>-0.03</td>
<td>-0.18</td>
<td>-0.07 ± 0.05</td>
</tr>
<tr>
<td>365.3 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>147.59</td>
<td>-1.47</td>
<td>-0.29 ± 0.08</td>
</tr>
<tr>
<td>B</td>
<td>7.39</td>
<td>0.58</td>
<td>-0.06 ± 0.03</td>
</tr>
<tr>
<td>A''</td>
<td>1.12</td>
<td>-1.47</td>
<td>0.14 ± 0.06</td>
</tr>
<tr>
<td>B''</td>
<td>-0.19</td>
<td>-0.04</td>
<td>-0.01 ± 0.02</td>
</tr>
<tr>
<td>182.6 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-1317.09</td>
<td>-1.49</td>
<td>0.49 ± 0.06</td>
</tr>
<tr>
<td>B</td>
<td>573.03</td>
<td>0.08</td>
<td>0.07 ± 0.02</td>
</tr>
<tr>
<td>A''</td>
<td>-1.37</td>
<td>1.22</td>
<td>-0.01 ± 0.06</td>
</tr>
<tr>
<td>B''</td>
<td>-0.46</td>
<td>-0.08</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>13.6 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-227.64</td>
<td>1.30</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>97.85</td>
<td>-0.69</td>
<td>-0.08 ± 0.10</td>
</tr>
<tr>
<td>A''</td>
<td>0.28</td>
<td>-4.58</td>
<td>-0.83 ± 0.29</td>
</tr>
<tr>
<td>B''</td>
<td>0.14</td>
<td>-2.54</td>
<td>-0.21 ± 0.11</td>
</tr>
</tbody>
</table>

Less accurate, leads to larger discrepancies in other coefficients.
Results – relativistic parameters

- **Temporal variation of gravitational constant**

 - modelled as \(G(t) = G_0 \left(1 + \frac{\dot{G}}{G_0} \Delta t + \frac{1}{2} \frac{\ddot{G}}{G_0} \Delta t^2 \right) \)

 - moderate to strong correlations with
 - lunar core rotation vector (fixed in solution)
 - some station coordinates (constrained a little bit)

 - as single parameters:
 \[\frac{\dot{G}}{G_0} = (0.7 \pm 0.8) \times 10^{-13} \text{ yr}^{-1} \]
 \[\frac{\ddot{G}}{G_0} = (1.6 \pm 2.0) \times 10^{-15} \text{ yr}^{-2} \]

 - estimated together:
 \[\frac{\dot{G}}{G_0} = (0.8 \pm 1.1) \times 10^{-13} \text{ yr}^{-1} \]
 \[\frac{\ddot{G}}{G_0} = (-0.3 \pm 2.4) \times 10^{-15} \text{ yr}^{-2} \]
Results – relativistic parameters

- **Equivalence principle**
 - estimating ratio $\Delta \left(\frac{m_g}{m_i} \right)_{\text{EM}}$
 - partials: computed numerically by introducing additional acceleration of Moon towards Sun
 - $\Delta \left(\frac{m_g}{m_i} \right)_{\text{EM}} = (-3.0 \pm 6.6) \times 10^{-14}$
 - Estimating Nordtvedt parameter η
 - partials: analytical from synodic range variation: $13.1m \cdot \cos(D) \cdot \eta$
 - $\eta = (-0.2 \pm 1.2) \times 10^{-4}$
 - into direction of galactic center (e.g. due to dark matter)
 - amplitude: $A_{gc} = 3.0 \pm 3.3 \text{ mm}$
 - additional acceleration $a_{gc} = (-1.1 \pm 1.2) \times 10^{-6}$
 - in parts of $1.9 \times 10^{-8} \text{ cm/s}^2$
Results – relativistic parameters

- **PPN parameters** β, γ
 - included in EIH-equations of motion, partials numerically
 - correlated with station coordinates (constrained)
 - show also correlations with z-coordinate of lunar initial orbit values

\[
\beta - 1 = (0.9 \pm 1.0) \times 10^{-4}
\]

\[
\gamma - 1 = (-1.2 \pm 1.6) \times 10^{-4}
\] (not as accurate as Cassini-result)

- β from combination of PPN-parameters $0.25(\gamma+\eta+3)$ and Cassini-γ

\[
\beta - 1 = (0.03 \pm 6.1) \times 10^{-5}
\]

- **PPN preferred frame** α_1, α_2 w.r.t. cosmic microwave background

\[
\alpha_1 = (-1.1 \pm 2.0) \times 10^{-5}
\]

\[
\alpha_2 = (-0.6 \pm 0.9) \times 10^{-5}
\] (not as accurate as test with Sun‘s spin)
Results – relativistic parameters

- **Geodetic precession** of lunar orbit
 - introducing GP a second time as additional acceleration
 - factor h gives relative deviation in from Einstein's theory (~1.9 as/cy)
 - strong correlation with
 - lunar core rotation vector (fixed)
 - z-component of lunar initial velocity (fixed)

 \[h = (-0.6 \pm 2.0) \times 10^{-3} \]

- **Yukawa-term** (1/r²-test), acceleration due to

 \[V_{EM} = -\frac{GM_E M_M}{r} \left(1 + \alpha e^{-r/\lambda}\right) \]

 - interacting range \(\lambda = 380000 \text{ km} \)
 - coupling constant \(\alpha \) estimated
 - correlations and fixed values like GP
 - \(\alpha = (-4.0 \pm 5.0) \times 10^{-12} \)
Summary

- IfE-LLR ephemeris model updated
 - tidal acceleration, secular trend in Earth‘s C_{20}
 - additional gravitational interactions planets-Moon, Earth-Moon
 - lunar rotation as 2-layer core/mantle model
 - effect of lunar deformation in all lunar equations of motion (translation plus rotation)

- Smaller residuals and more accurate parameter estimation
 - increased accuracy in relativistic parameters (strong limits for validity of equivalence principle and gravitational constant)
 - no deviation from Einstein‘s theory of gravity up to now