SLR AND ALTIMETRY: A SUCCESS STORY AND A LASTING PARTNERSHIP

J.-P. Berthias with contributions from J. Lambin and the CNES POD Team (A. Couhert, L. Cerri)
● A LONG HISTORY, A RICH FUTURE

● A FEW RESULTS

● THE EVOLVING ROLE OF SATELLITE LASER RANGING

● CONCLUSION
A LONG HISTORY, A RICH FUTURE

A FEW RESULTS

THE EVOLVING ROLE OF SATELLITE LASER RANGING

CONCLUSION
SKYLAB - FIRST ALTIMETER IN SPACE
1973
FIRST ALTIMETRY SATELLITE: GEOS 3
JHU/APL mission
April 1975 – July 1979
GEOS 3

Ring LRA around altimeter antenna
SEASAT

NASA/JPL-DoD mission
July 1978 – October 1978

The beginning of satellite oceanography using active microwave remote sensing (altimetry and SAR imaging)

Ring LRA around the altimeter antenna; SLR was used for orbit determination and altimeter range calibration
THE BEGINNING OF PRECISION OCEAN ALTIMETRY

Soon after the loss of SEASAT, NASA started planning for a new altimeter mission, focused on ocean surface topography, the Ocean Topography Experiment

At the same time the French Space Agency CNES started work on a solid state radar altimeter which could fly as a secondary payload on the Earth observation satellite SPOT

CNES and NASA soon joined forces to propose TOPEX/Poseidon, a mission dedicated to ocean topography

The idea to fly an altimeter on a SPOT-like platform was picked by ESA and became ERS …

But GEOSAT arrived first!
THE OFFSPRING OF THE 80’s

GEOSAT US Navy
March 1985 – Sept. 1986

ERS-1 ESA
July 1991 – March 2000

TOPEX-Poseidon CNES-NASA/JPL
August 1992 – January 2006

All of these missions relied extensively on SLR for tracking and Cal/Val

GEOSAT and TOPEX still used the ring LRA design of GEOS-3
THE TOPEX CHALLENGE: 10 CM ORBITS

Error budget of altimeter missions

- Orbit error
- Alt. Instr. error
- Ionosphere
- Troposphere
- EM Bias

Ocean signal

**Centimeters**

- Geos 3
- SEASAT
- GEOSAT
- ERSI
- T/P (before launch)
- T/P (after launch)

**DORIS (TOPEX)**

**GPS (TOPEX)**

**PRARE (ERS)**
THE TURN OF THE CENTURY

ERS-2 (ESA)
April 1995 – July 2011

GFO (US Navy)

Jason 1 (CNES-NASA)

ENVISAT (ESA)
March 2002 – May 2012
THE FUTURE


SENTINEL-3A / 3B / 3C (EU/ESA) 2015 / 2017 / TBD

Jason-CS/SENTINEL-6 (EU/ESA) To be decided

Hai Yang-2B / 2C / 2D (CNSA)

SWOT (CNES-NASA) 2020
A LONG HISTORY, A RICH FUTURE

A FEW RESULTS

THE EVOLVING ROLE OF SATELLITE LASER RANGING

CONCLUSION
PRODUCTS OF ALTIMETRY

Mean Sea Surface

Wind-Wave

Mean Sea Level

Dynamic Topography
Very good agreement between all the altimeters on the Mean Sea level

Measuring the mean sea level drift with a precision better than 1 mm/yr over the long term puts strong requirements on the orbit determination:

no drift of more than 1 mm/yr over 5 years is allowed!
The new objective is to measure the rise in the Mean Sea level at the mm/yr not globally but locally!

This puts strong requirements on orbit stability.
KA BAND EXCELLENT RESULTS (CNES/CLS)

- First Ka band altimeter
- Meets or exceeds all mission requirements
- Impact of rain less important than anticipated

<table>
<thead>
<tr>
<th>Altimeter parameter</th>
<th>Specifications</th>
<th>Measured on ground</th>
<th>In flight data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Hz range</td>
<td>1.5 cm</td>
<td>0.9 cm</td>
<td>0.9 cm</td>
</tr>
<tr>
<td>1Hz SWH</td>
<td>6.3 cm</td>
<td>5.7 cm</td>
<td>5 cm</td>
</tr>
<tr>
<td>1Hz Sigma0</td>
<td>0.2dB*</td>
<td>NA</td>
<td>0.012 dB</td>
</tr>
</tbody>
</table>

*includes the noise and the non-calibrated drift error
BENEFIT OF KA BAND SMALLER FOOTPRINT

Pass 760: Transition terre-mer

ENVISAT

SARAL

Pass 760: Transition terre-mer
6 months of tandem flight where each measurement can be compared

- Difference Jason-1 – TOPEX in Sea Surface Height (scale +/-2 cm)

The result of years of efforts by the Science Team to improve performance

Courtesy G. Dibarboure, CLS
- A LONG HISTORY, A RICH FUTURE
- A FEW RESULTS
- THE EVOLVING ROLE OF SATELLITE LASER RANGING
- CONCLUSION
SLR TRACKING SUMMARY

Number of SLR tracking stations per satellite

Stable SLR tracking level: about 20 stations track Jason-2
about 15 stations routinely track CryoSat-2, HY-2A and SARAL
Nowadays SLR measurements have a relatively low weight in the orbit solution => high elevation residuals provide a good estimate of the radial orbit precision

RMS of SLR residuals above 70 degree elevation on a 3-stations core-network (7090Yarr, 7105Green, 7839Graz)

Higher Yarragadee residuals lead to increased RMS between mid-2010 and mid-2012

Current estimate of orbit radial accuracy is 1 to 1.5 cm for Jason-2 and 1 to 2 cm for CRYOSAT, HY-2A and SARAL
TIME VARIABLE GRAVITY INDUCED RADIAL ORBIT DRIFTS

Secular trends and aperiodic variations in the Earth gravity field which are not captured in the reference gravity models can induce radial drifts in the orbits which exceed locally the 1 mm/year requirement.

These regional drifts can only be independently monitored through the use of SLR (at orbit level) or tide gauges (at sea level).
Careful monitoring of SLR stations range biases is mandatory to use SLR as a orbit drift monitoring tool.

Drifts in biases can hide drifts in orbits.

Drifts can have multiple origins (station problems, coordinate errors, etc.)

Biases estimated using DORIS or GPS-only orbits.
CONCLUSION

Satellite Laser Ranging is a natural complement of altimetry missions: like the altimeter, SLR measures the true ground-to-satellite range.

SLR was initially the primary tracking system to produce high precision orbits; it is now the reference used to evaluate orbit precision and stability.

Monitoring sea level rise on basin scales at the mm/year level over 5 to 10 years requires very stable orbits; monitoring this orbit stability requires stable SLR stations.
THANK YOU TO THE ILRS FROM THE OCEAN ALTIMETRY COMMUNITY !!!

For more details on altimetry missions visit the EO portal
https://directory.eoportal.org/web/eoportal/home
For more results from altimetry visit the AVISO web site