TEST OF GENERAL RELATIVITY USING LLR DATA AND THE PLANETARY EPHEMERIS PROGRAM (PEP)

M. Martini¹, J.F. Chandler², S. Dell’Agnello¹, E. Ciocci¹

¹Laboratori Nazionali di Frascati (LNF) dell’INFN
²Harvard-Smithsonian Center for Astrophysics

19th International Workshop on Laser Ranging, Annapolis October 27-31, 2014
Outline

• Introduction

• Test of General Relativity

• Software package

• Data analysis
CCRs Arrays on the Moon

Re-discovered Lunokhod 1 (Luna 17 lander)

Manuele Mar&ni et al.
Current LLR tests of General Relativity

J. G. Williams, S. G. Turyshev, and D. H. Boggs, PRL 93, 261101 (2004)

<table>
<thead>
<tr>
<th>Science measurement / Precision test of violation of General Relativity</th>
<th>Apollo/Lunokhod few cm accuracy*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameterized Post-Newtonian (PPN) β</td>
<td>$</td>
</tr>
<tr>
<td>Weak Equivalence Principle (WEP)</td>
<td>$</td>
</tr>
<tr>
<td>Strong Equivalence Principle (SEP)</td>
<td>$</td>
</tr>
<tr>
<td>Time Variation of the Gravitational Constant</td>
<td>$</td>
</tr>
<tr>
<td>Inverse Square Law (ISL)</td>
<td>$</td>
</tr>
<tr>
<td>Geodetic Precession</td>
<td>$</td>
</tr>
</tbody>
</table>
In order to analyze LLR data we used the PEP software, developed by the CfA, by I. Shapiro et al. starting from 1970s.

The model parameter estimates are refined by minimizing the residual differences, in a weighted least-squares sense, between observations (O) and model predictions (C, stands for "Computation"), O-C.

"Observed" is round-trip time of flight. "Computed" is modeled by the PEP software.
O-C residual analysis with PEP

Manuele Martini et al.
K_{GP} is the relative deviation from the value of geodetic precession expected in GR

\[K_{GP} = (4.3 \pm 8.6) \times 10^{-3} \]

In this analysis \(\beta=\gamma=1 \), \(dG/dt=0 \). Nominal errors returned by the fit are significantly smaller than the above estimated values of \(K_{GP} \).
Determination of K_{GP}

This preliminary measurement must be compared with the best result published by JPL obtained using a completely different software package.

$$K_{GP} = (-1.9 \pm 6.4) \times 10^{-3}$$

Our Goals: accuracy on K_{GP} of few $\%$ with current LLR data. ≥ 10 improvement possible only with MoonLIGHTs. PEP simulation of physics reach of new CCRs at lunar poles/limbs/equator.
Simulated observations

PEP can make simulated “dummy” observations.

We are simulating new arrays on lunar surface.

We are simulating arrays at the pole of the Moon and we want to see how the PPN parameters change.
Simulated observations

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2016</th>
<th>2018</th>
<th>2020</th>
<th>2022</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gdot</td>
<td>1.59E-14</td>
<td>7.73E-15</td>
<td>5.43E-15</td>
<td>3.78E-15</td>
<td>2.74E-15</td>
<td>1.72E-15</td>
<td>1.10E-15</td>
</tr>
<tr>
<td>KGP</td>
<td>3.38E-04</td>
<td>2.10E-04</td>
<td>1.55E-04</td>
<td>1.15E-04</td>
<td>1.01E-04</td>
<td>7.83E-05</td>
<td>6.27E-05</td>
</tr>
<tr>
<td>beta</td>
<td>6.43E-04</td>
<td>4.16E-04</td>
<td>2.73E-04</td>
<td>2.11E-04</td>
<td>1.88E-04</td>
<td>1.49E-04</td>
<td>1.22E-04</td>
</tr>
</tbody>
</table>

ARRAYS:

AP11-AP14-AP15-LN1-LN2
Moon Express 65N 40W
Astrobotic 50S 35E
Israel 45N 27.2E

STATIONS:

APOLLO 3-16 ps
CERGA 7-33 ps
MLRS 7-33 ps
MLRO 7-33 ps

Cadence: 30 days for APOLLO, 20 days for MLRS, 14 days for CERGA, 8 days for MLRO
Simulated observations

MNEX 65N:

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2016</th>
<th>2018</th>
<th>2020</th>
<th>2022</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
</table>

MNEX 87N:

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2016</th>
<th>2018</th>
<th>2020</th>
<th>2022</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>eta</td>
<td>2.550e-03</td>
<td>1.788e-03</td>
<td>1.269e-03</td>
<td>1.003e-03</td>
<td>9.075e-04</td>
<td>7.211e-04</td>
<td>6.098e-04</td>
</tr>
<tr>
<td></td>
<td>1.561e-03</td>
<td>1.007e-03</td>
<td>7.577e-04</td>
<td>6.655e-04</td>
<td>5.286e-04</td>
<td>4.536e-04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.916E-04</td>
<td>2.495E-04</td>
<td>1.949E-04</td>
<td>1.705E-04</td>
<td>1.349E-04</td>
<td>1.141E-04</td>
<td></td>
</tr>
</tbody>
</table>

Manuele Martini et al.
Simulated observations

Manuele Martini et al.
Simulated observations

Manuele Martini et al.
Simulated observations

Manuele Martini et al.
Other Solar System applications

See talk by S. Dell’Agnello
Conclusion

• Deepen our knowledge about data and software in order to better estimate (and reduce) the measurement uncertainty on K_{GP} and on other GR parameters.

• Improve the precision of these kind of General Relativity measurements by using not only LLR data, but also SLR data to Earth satellites and primarily to LAGEOS.

• We have the option to implement the equations of motion of new gravity theories (like SPACETIME TORSION and NON-MINIMALLY COUPLED GRAVITY – see talk by S. Dell’Agnello) inside PEP and study not only the secular variation of the geodetic precession, but also periodic signatures of NEW PHYSICS on the geodetic precession and on other PPN parameters.
THANK YOU
FOR YOUR ATTENTION

ANY COMMENTS/QUESTIONS?

Manuele Martini et al.