Geocenter motion excited by large-scale mass redistribution

Koji Matsuo1, Toshimichi Otsubo2, Hiroshi Munekane1, Yoichi Fukuda3

1. Geospatial Information Authority of Japan
2. Hitotsubashi University
3. Kyoto University
Definition of Geocenter

Center of Figure (CoF)

Center of Mass (CoM)

Geocenter = CoM w.r.t. CoF
Measurement of geocenter motion from SLR

Measuring loading deformation which includes degree-1 components

Measuring gravity variations which does not include degree-1 components

SLR is the best technique to measure geocenter motion at present

Observed deformation - gravity-derived deformation
= degree-1 deformation = Geocenter motion
Objective of this study

- To derive geocenter motion from SLR observation using our original software package “c5++”
- To assess our “c5++” solution by comparing with CSR solution
- To investigate driving sources of recent long-term geocenter motion
SLR analysis software: **CONCERTO 5++ (c5++)**

(Otsubo et al, 1994; Hobiger et al., 2013)

Implement up-to-date geophysical models and TRF

- IERS Conventions 2010
- EGM 2008 model
- ITRF 2008
- etc
Strategy of SLR data analysis

- Arc length is 3 days
- Empirical acceleration (constant and one-per-rev) is estimated at 1.5 days interval
- 60 days -average geocenter motion is calculated
Results: Geocenter motion from c5++
Geocenter motion from CSR (provided by Dr. Ries)
Scatter plot: c5++ solution vs. CSR solution

X axis
Correlation = 0.61

Y axis
Correlation = 0.82

Z axis
Correlation = 0.83
Long-term geocenter motion: c5++ solution

2-year moving average

- **X direction**
- **Y direction**: Shift in trend around 2000
- **Z direction**

Time (year): 1994 to 2014
Long-term geocenter motion: CSR solution

2-year moving average

X direction

Y direction

Z direction

Shift in trend around 2000
Trend shift in ΔJ_2 from SLR observation

Melting of polar ice sheets change the trend in ΔJ_2

(Cheng et al., JGR 2013)
Main sources of mass redistribution in 2000s

Linear mass trend in 2003-2013 from GRACE gravimetry

- Glacial Isostatic Adjustment
- Ice loss
- Sea-level rise

cm/yr

-16.0 -6.0 -2.4 -0.8 0.8 2.4 6.0 16.0
Estimation of mass-driven geocenter motion

1. Polar ice sheets
 Ice thickness variations from ICESat altimetry from 2003 Oct. to 2009 Sep.

2. Sea level rise
 Solve sea-level equation using ice mass variations from ICESat

3. Glacial Isostatic Adjustment
 Theoretical values by Greff-Lefftz (JGR 2000)
1. Polar ice sheets: Antarctica

Linear trend in ice thickness from ICESat (2003-2009)

Total mass change in Antarctica

Ice loss rate of ~100 Gt/yr

Assumes ice density as 700 kg/m3 for ablation area, 300 kg/m3 for accumulation area
1. Polar ice sheets: Greenland

Linear trend in Ice thickness from ICESat (2003-2009)

Total mass change in Greenland

Assumes ice density as 700 kg/m3 for ablation area, 300 kg/m3 for accumulation area
2. Sea level rise

Sea level equation [e.g. Métivier et al., EPSL 2010]

\[
h_{SL}(\theta, \varphi, t) = \frac{\rho_{l}}{g_{o}} \Phi(\theta, \varphi) * h_{l}(\theta, \varphi, t) + \frac{\rho_{OC}}{g_{o}} \Phi(\theta, \varphi) * h_{SL}(\theta, \varphi, t)^{SL} + C(t)
\]

Sea level rise by polar ice mass variations

Total sea level variation by polar ice mass variations

Sea level rise of ~1 mm/yr
3. Glacial Isostatic Adjustment

Theoretical estimation by Greff-Lefftz (JGR 2000)

GIA-driven geocenter motion depends on viscosity of lower mantle and upper mantle

Here, we pick up the average values of the right figure:

\[X_g = 0.1 \pm 0.05 \text{ mm/yr} \]
\[Y_g = -0.1 \pm 0.1 \text{ mm/yr} \]
\[Z_g = 0.2 \pm 0.2 \text{ mm/yr} \]
Results: Estimated geocenter motion

X axis
- ICE: -0.17 mm/yr
- SEA: -0.15 mm/yr
- GIA: 0.10 mm/yr

Y axis
- ICE: 0.37 mm/yr
- SEA: -0.05 mm/yr
- GIA: -0.10 mm/yr

Z axis
- ICE: -0.56 mm/yr
- SEA: -0.17 mm/yr
- GIA: 0.20 mm/yr
Results: Comparison between SLR and estimation

X axis
- SLR (c5++): -0.04 mm/yr
- SLR (CSR): -0.04 mm/yr
- ICE+SEA+GIA: -0.22 mm/yr

Y axis
- SLR (c5++): +0.22 mm/yr
- SLR (CSR): +0.53 mm/yr
- ICE+SEA+GIA: +0.22 mm/yr

Z axis
- SLR (c5++): -0.60 mm/yr
- SLR (CSR): -0.84 mm/yr
- ICE+SEA+GIA: -0.53 mm/yr
Results: Linear rates of geocenter motion

<table>
<thead>
<tr>
<th></th>
<th>X axis (mm/yr)</th>
<th>Y axis (mm/yr)</th>
<th>Z axis (mm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLR (c5++)</td>
<td>-0.04 ± 0.08</td>
<td>+0.22 ± 0.02</td>
<td>-0.60 ± 0.03</td>
</tr>
<tr>
<td>**SLR (CSR)</td>
<td>-0.05 ± 0.04</td>
<td>+0.53 ± 0.04</td>
<td>-0.84 ± 0.08</td>
</tr>
<tr>
<td>ICE+SEA+GIA</td>
<td>-0.22 ± 0.06</td>
<td>+0.22 ± 0.10</td>
<td>-0.53 ± 0.24</td>
</tr>
<tr>
<td>ICE</td>
<td>-0.17 ± 0.02</td>
<td>+0.37 ± 0.01</td>
<td>-0.56 ± 0.14</td>
</tr>
<tr>
<td>SEA</td>
<td>-0.15 ± 0.02</td>
<td>-0.05 ± 0.01</td>
<td>-0.17 ± 0.01</td>
</tr>
<tr>
<td>GIA</td>
<td>+0.10 ± 0.05</td>
<td>-0.10 ± 0.10</td>
<td>+0.20 ± 0.20</td>
</tr>
</tbody>
</table>
Summary

- Recent large-scale mass redistributions move geocenter to south by ~0.5 mm/yr and 135E direction by ~0.3 mm/yr
- Mass losses in polar ice sheets are the main sources of recent geocenter motion
- SLR observation roughly agrees with the estimated results
- Our X component solution appears to be noisy (currently being investigated)
Future works

- To include contributions from ice mass variations in mountain glaciers using ICESat altimetry data
- To examine contributions of massive earthquakes using dislocation theory

Thank you for your attention!
Significance of precise geocenter determination

• Construction of Terrestrial Reference Frame (TRF)

• Precise determination of crustal velocity field

• Construction of global geoid model
Estimation of mass-driven geocenter motion

Computational formula of geocenter motion [e.g. Munekane, JGR 2007]

\[X_g = R \sqrt{3} \left(\frac{1 - \frac{h_1' + 2l_1'}{3}}{1 + k_1'} \right) \Delta C_{11} \]

\[Y_g = R \sqrt{3} \left(\frac{1 - \frac{h_1' + 2l_1'}{3}}{1 + k_1'} \right) \Delta S_{11} \]

\[Z_g = R \sqrt{3} \left(\frac{1 - \frac{h_1' + 2l_1'}{3}}{1 + k_1'} \right) \Delta C_{10} \]

\(X_g, Y_g, Z_g: \)
Geocenter motion

\(\Delta C_{10}, \Delta C_{11}, \Delta S_{11}: \)
dimensionless Stokes' coefficients of geopotential

\(R: \) Radius of the Earth

\(k_1', h_1', l_1': \)
load love and Shida number of degree-1 components
Map of SLR stations

Annual variation

Atmosphere (ECMWF model)
Ocean (ECCO model)
Land water (GLDAS model)
Geocenter motion estimated from geophysical fluid models
Phasor diagram of annual components

$$\text{Amplitude of Sine}$$

$$\text{Amplitude of Cosine}$$

X axis

SLR (CSR)

$$1.79 \pm 0.34 \text{ mm}$$

SLR (c5++)

$$2.37 \pm 0.49 \text{ mm}$$

Fluid model

$$3.85 \pm 0.29 \text{ mm}$$

Y axis

SLR (CSR)

$$0.72 \pm 0.35 \text{ mm}$$

SLR (c5++)

$$1.54 \pm 0.31 \text{ mm}$$

Fluid model

$$2.91 \pm 0.30 \text{ mm}$$

Z axis

SLR (CSR)

$$5.17 \pm 0.69 \text{ mm}$$

SLR (c5++)

$$6.02 \pm 0.68 \text{ mm}$$

Fluid model

$$6.84 \pm 0.31 \text{ mm}$$