The results of two-color observations

Stanisław Schillak

e-mail: sch@cbk.poznan.pl

Space Research Centre PAS
Astrogeodynamic Observatory at Borowiec
Realization of SLR two-color observations

**Zimmerwald** (7810): from August 2002 to January 2008
titanium-sapphire laser 423 nm and 846 nm
new Nd:YAG laser from March 2008

**Concepcion** (7405): from May 2003 to November 2009
titanium-sapphire laser 423 nm and 846 nm
only 846 nm from December 2009

Now, no any SLR station with two-color observations

**Future:** new SLR station in Wettzell?
titanium-sapphire kilohertz laser,
comparison of normal points for both colors
Other stations?
Method of measurements

- common start channel for both colors
- separately stop channel: two detectors, two time interval counters (event timers)
- common calibration for both colors
- determination of differences point by point between results in two colors → too low accuracy
Importance of two-color laser ranging

current atmospheric model for determination of atmospheric correction is insufficient for better accuracy of SLR measurements

the atmospheric correction limited SLR accuracy to 3-5 mm

two-color laser ranging should improve accuracy to minimum 2 mm

previous tests of two-color observations were insufficient due to too low sensitivity of detector (streak camera)
CONCLUSIONS

Systematic differences were detected between Range Biases for blue color (423 nm) and infrared (846 nm) in results of the six years of Zimmerwald data.

Differences between two colors have character of annual wave with maximum in summer.

It is very good agreement for Range Biases of LAGEOS-1 and LAGEOS-2.

These differences are only in vertical component, for horizontal components the differences are below 1 mm.

The reason of these differences can be the effect of differences in light velocity in atmosphere for two colors not adequate considered in current atmospheric model.

Results of two-color observations in Concepcion can not to be use due to small number of common observations in both colors (only 8).

Verification of presented results now is not possible because any SLR station don’t observe in two-colors.

New kilohertz SLR station in Wettzell can to be able for determination of differences between two colors (423 nm and 846 nm) by comparison of normal points.

In the near future the best SLR stations should to begin observations in two-colors by neodymium lasers for two wavelengths 532 nm and 1064 nm, especially that a new detectors for infrared have now higher sensitivy.
ACKNOWLEDGEMENTS

The author wish to thank

NASA GSFC for consent to use GEODYN-II program
Zimmerwald staff for high quality SLR data

This work has been supported by financial resources for
science in 2010-2013 as a research project No. N N526 231839
Thank you