JCET’s Daily-updated State-of-the-art SLR-only TRF

Erricos C. Pavlis, M. Kuzmicz-Cieslak, Daniel König and K. Evans
GEST/UMBC, Baltimore, MD, USA
Introduction

• The ITRF is updated on a nominal timescale of 3-4 years

• The ILRS network is currently upgraded and new sites and systems require accurate coordinates much more often than the ITRF can accommodate

• GGOS’ stringent requirements must be met at all times
 – SLR is currently off target by a factor of ~10-20

• Monitoring the network’s quality requires high fidelity coordinates to provide robust estimate of any systematic errors in the hardware
 – The QC service of the ILRS requires sufficiently accurate coordinates to maintain the fidelity of their daily reports
ILRS QC Resources

• The ILRS has dedicated Analysis Centers that monitor the quality of the data collected at all sites

• Most QC ACs deliver these reports on a weekly basis, some provide daily reports

• The information provided in these reports is compiled into a “report card” (originally quarterly, now monthly!) that is available online

 — For each site one can find short-term and long-term performance based on their statistics over the past 3-months and 1-year periods respectively
SLR Global Performance Report Card

<table>
<thead>
<tr>
<th>Site Information</th>
<th>DGFI Orbital Analysis</th>
<th>Hitotsubashi Univ. Orbital Analysis</th>
<th>JCET Orbital Analysis</th>
<th>MCC Orbital Analysis</th>
<th>SHAO Orbital Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAG NP RMS (mm)</td>
<td>short term (mm)</td>
<td>long term (mm)</td>
<td>% good LAG NP</td>
<td>LAG NP RMS (mm)</td>
</tr>
<tr>
<td>Baseline</td>
<td>10.0</td>
<td>20.0</td>
<td>10.0</td>
<td>95</td>
<td>10.0</td>
</tr>
<tr>
<td>Yarragadee</td>
<td>7090</td>
<td>3.7</td>
<td>15.6</td>
<td>1.8</td>
<td>100.0</td>
</tr>
<tr>
<td>Changchun</td>
<td>7237</td>
<td>4.2</td>
<td>26.7</td>
<td>4.7</td>
<td>99.1</td>
</tr>
<tr>
<td>Mount Stromlo_2</td>
<td>7825</td>
<td>4.2</td>
<td>14.1</td>
<td>4.1</td>
<td>100.0</td>
</tr>
<tr>
<td>Zimmerwald_532</td>
<td>7810</td>
<td>3.1</td>
<td>11.6</td>
<td>7.8</td>
<td>99.9</td>
</tr>
<tr>
<td>Wettzell</td>
<td>8834</td>
<td>3.7</td>
<td>13.1</td>
<td>3.8</td>
<td>100.0</td>
</tr>
<tr>
<td>Graz</td>
<td>7839</td>
<td>2.5</td>
<td>11.2</td>
<td>3.8</td>
<td>100.0</td>
</tr>
<tr>
<td>Matera_MLRO</td>
<td>7941</td>
<td>2.6</td>
<td>12.0</td>
<td>4.7</td>
<td>99.9</td>
</tr>
<tr>
<td>Greenbelt</td>
<td>7105</td>
<td>4.5</td>
<td>12.9</td>
<td>4.2</td>
<td>100.0</td>
</tr>
<tr>
<td>Herstmonceux</td>
<td>7840</td>
<td>2.7</td>
<td>9.8</td>
<td>3.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Monument_Peak</td>
<td>7110</td>
<td>5.8</td>
<td>17.2</td>
<td>5.3</td>
<td>99.7</td>
</tr>
<tr>
<td>Hartebeesthoek</td>
<td>7501</td>
<td>4.8</td>
<td>18.6</td>
<td>5.0</td>
<td>100.0</td>
</tr>
<tr>
<td>San_Juan</td>
<td>7406</td>
<td>15.9</td>
<td>44.1</td>
<td>9.5</td>
<td>97.5</td>
</tr>
<tr>
<td>Potsdam_3</td>
<td>7841</td>
<td>3.9</td>
<td>10.7</td>
<td>4.2</td>
<td>100.0</td>
</tr>
<tr>
<td>Grasse_MEO</td>
<td>7845</td>
<td>4.2</td>
<td>14.1</td>
<td>3.1</td>
<td>100.0</td>
</tr>
<tr>
<td>Arequipa</td>
<td>7403</td>
<td>5.6</td>
<td>22.6</td>
<td>11.8</td>
<td>99.5</td>
</tr>
<tr>
<td>Shanghai_2</td>
<td>7821</td>
<td>8.0</td>
<td>44.8</td>
<td>19.7</td>
<td>99.4</td>
</tr>
<tr>
<td>Haleakala</td>
<td>7119</td>
<td>7.0</td>
<td>22.3</td>
<td>9.0</td>
<td>98.3</td>
</tr>
<tr>
<td>Simosato</td>
<td>7838</td>
<td>6.5</td>
<td>27.7</td>
<td>11.3</td>
<td>100.0</td>
</tr>
<tr>
<td>McDonald</td>
<td>7080</td>
<td>5.2</td>
<td>14.9</td>
<td>5.3</td>
<td>99.7</td>
</tr>
<tr>
<td>Kiev</td>
<td>1824</td>
<td>18.3</td>
<td>42.8</td>
<td>26.5</td>
<td>84.1</td>
</tr>
<tr>
<td>Katzively</td>
<td>1893</td>
<td>15.8</td>
<td>15.7</td>
<td>6.4</td>
<td>98.9</td>
</tr>
</tbody>
</table>
Japan and Australia Region

SHORT-TERM RMS (AVERAGE)

LONG-TERM RMS (AVERAGE)
Eastern Asia Region

SHORT-TERM RMS (AVERAGE)

LONG-TERM RMS (AVERAGE)
SLR Data Processing Phases

- CDDIS/EDC DC
- JCET AC
- LAGEOS 1
- LAGEOS 2
- LARES
- ETALON 1
- ETALON 2

COMBINATION
LAGEOS, LARES & ETALON NEQs
Relative weighting

ACCUMULATED NEQs OF LAGEOS, LARES AND ETALON FROM PREVIOUS WEEKLY REDUCTIONS

- STATION COORDINATES
- STATION VELOCITIES
- EOP SERIES (DAILY SINCE 1993)
- WEEKLY 1st deg. HARMONICS
- WEEKLY 2nd deg. HARMONICS
- Higher HARMONICS
- ORBITAL PARAMETERS, ...
Weekly Coordinate Variations - Koganei

7308 Koganei

\[\Delta X, \Delta Y, \Delta Z \text{ [mm]} \]

\[\text{DATE} \]

10/1/12 12/1/12 2/1/13 4/1/13 6/1/13 8/1/13 10/1/13

\[\bullet \Delta X[\text{mm}] \]
\[\square \Delta Y[\text{mm}] \]
\[\triangle \Delta Z[\text{mm}] \]
Weekly Coordinate Variations - Simosato

7838 Simosato

\[\Delta X, \Delta Y, \Delta Z \text{ [mm]} \]

\[\bullet \Delta X \text{ [mm]} \]
\[\square \Delta Y \text{ [mm]} \]
\[\triangle \Delta Z \text{ [mm]} \]

DATE

10/1/12 12/1/12 2/1/13 4/1/13 6/1/13 8/1/13 10/1/13
Weekly Coordinate Variations - Tanegashima

7358 Tanegashima

ΔX, ΔY, ΔZ [mm]

DATE

10/1/12 12/1/12 2/1/13 4/1/13 6/1/13 8/1/13 10/1/13

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

- ΔX[mm] - ΔY[mm] - ΔZ[mm]
Weekly Coordinate Variations - Yarragadee

7090 Yarragadee

$\Delta X, \Delta Y, \Delta Z \text{ [mm]}$

DATE

10/1/12 12/1/12 2/1/13 4/1/13 6/1/13 8/1/13 10/1/13

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

-\text{\bullet ΔX [mm]}
-\text{\square ΔY [mm]}
-\text{\triangle ΔZ [mm]}
Weekly Coordinate Variations - MLRS

7080 McDonald Obs.

DATE
10/1/12 12/1/12 2/1/13 4/1/13 6/1/13 8/1/13 10/1/13

ΔX, ΔY, ΔZ [mm]

• ΔX[mm]
• ΔY[mm]
• ΔZ[mm]
Monitoring of ILRS Analysis WG Products

- Weekly Station Positions & Daily EOP Series
- Evaluation of Weekly AWG Products
- Monitoring Systematic Errors at ILRS Stations
- Normal Point Data Monitoring (CDDIS)
Summary

• A frequent update of the TRF used by the ILRS ACs is possible with little extra effort

• Updated quality coordinates can vastly improve the fidelity of the QC process for the network and ensure the quality of the ILRS products

• Addition of new SLR targets will enhance the quality of the monitoring of our products and provide the stations with better view of their systems performance (at various altitudes)