Centre of mass values for precise analysis of LAGEOS, Etalon and Ajisai 1980-2013

Graham Appleby
SGF Herstmonceux
Toshimichi Otsubo
Hitotsubashi University
Outline

• Previous work * developed generic centre of mass values that take account of station hardware;

• More recently tables of values for LAGEOS and Etalon and software were released and tested by Analysis Working Group

• New table for Ajisai now available

• Some comments on results for all three satellites

* Otsubo & Appleby, JGR, 2003
Station- and epoch-dependent CoM values

- Appropriate CoM value and its accuracy depends upon:
 - System detection hardware (SPAD, MCP, PMT)
 - Return energy level (multi-, single- or mix-)

(pulse transmitted from ground station)

(retroreflected pulse)

(imaginary pulse reflected at centre)
Station- and epoch-dependent CoM values

• Taking these generic, system-dependent results;
• Using up-to-date Site-log information and change records for all stations from ~1980 onwards as a critical resource
• Estimated CoM values and error estimates:
• In general, single-photon return allows determination of most accurate CoM value, even if single-shot precision is low(er):
Single-shot precision (RMS, mm) of LAGEOS ranges

A good proxy for system type (single, multi ph.), not (necessarily) a good indicator of accuracy of range or determination of CoM correction
e.g. High accuracy CoM for LAGEOS single-photon kHz data at SGF Herstmonceux

Model (red) fits very well. Implied CoM value from model is 245 ± 1 mm. Results (R Neubert, 2012) for upgraded Potsdam kHz system are identical (245 ± 1 mm). Single-shot precision only 15 mm in each case.
Station- and epoch-dependent CoM values

• For the multi-photon MCP (e.g., NASA) systems, model implies value of ~250mm, close to ground-measured, ‘standard’ 251

• However:
 – If logfile suggests that return energy variable or even unknown,
 – Larger (~10mm) **uncertainty** placed on model CoM value.
Detail from CoM table for LAGEOS

<table>
<thead>
<tr>
<th>Station</th>
<th>Time-span</th>
<th>detector info</th>
<th>CoM min, max, adopted (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7838</td>
<td>01 04 2008 31 12 2050</td>
<td>20 MCP CSM</td>
<td>3.0 6 15 252 248 250</td>
</tr>
<tr>
<td>7838</td>
<td>01 07 1990 01 04 2008</td>
<td>100 MCP CSM</td>
<td>3.0 20 40 252 248 250</td>
</tr>
<tr>
<td>7839</td>
<td>01 01 1983 31 12 2000</td>
<td>300 PMT NC</td>
<td>3.0120150 245 241 243</td>
</tr>
<tr>
<td>7839</td>
<td>01 11 1981 08 10 2003</td>
<td>35 CSP NCM</td>
<td>2.2 3 9 255 250 252</td>
</tr>
<tr>
<td>7839</td>
<td>09 10 2003 31 12 2050</td>
<td>10 CSP NSF</td>
<td>2.2 3 9 255 250 252</td>
</tr>
<tr>
<td>7840</td>
<td>01 02 2007 31 12 2050</td>
<td>10 CSP CS</td>
<td>2.5 3 9 245 245 245</td>
</tr>
<tr>
<td>7840</td>
<td>31 03 1983 31 03 1992</td>
<td>100 PMT NCF</td>
<td>3.0 35 45 252 244 248</td>
</tr>
<tr>
<td>7840</td>
<td>31 03 1992 31 12 2050</td>
<td>100 CSP CS</td>
<td>3.0 6 15 246 244 245</td>
</tr>
<tr>
<td>7841</td>
<td>20 07 2001 31 07 2011</td>
<td>50 PMT CSF</td>
<td>2.5 10 18 254 248 251</td>
</tr>
<tr>
<td>7841</td>
<td>01 08 2011 31 12 2050</td>
<td>10 CSP CSF</td>
<td>2.2 3 9 246 244 245</td>
</tr>
</tbody>
</table>

Data files for LAGEOS and Etalon and Fortran code are available to extract CoM for analyses
Testing the CoM tables during POD

• Tests were carried out by the ILRS ACs on the LAGEOS and Etalon tables via weekly solutions
 – For six months only
 – SGF AC results reported (EGU 2012, Frascati 2012)

• Effect on the quality of the reference frame quite marginal according to AWG & SGF work:
 – difference in scale, driven by more careful use of CoM values, is only 0.03ppb
Testing the CoM tables during POD

• But in detail, for some specific stations, effect is important and clears up some apparent data anomalies:

• e.g. Potsdam 7841, following a system upgrade to 2kHz:

• Time series of station height shows apparent drop in height of 7 or 8 mm (C. Luceri, 2013)

• 6mm of that is explained by use of CoMs 251 and 245mm for PMT and SPAD respectively, pre- and post-upgrade:
7841 - POTS : discontinuity

\[\Delta h = -8 \text{mm} \]

\[\text{RB} = +7 \text{mm} \]

\[\text{RB} = +8 \text{mm} \]

C Luceri, 2013

CoM table entries
But: Of course cannot attribute large effects to CoM effects

Range residuals from LAGEOS for a station that has two modes of operation – choice of two detectors. Plot from H Mueller
Ajisai

• Work has been extended to Ajisai
• 2150 mm diameter satellite, CoM variation of ~45mm
• Same treatment regarding station configuration, return-level, etc., as for LAGEOS and Etalon, from the published generic results
• Table of values produced, and read-software updated
• Will be available at EDC and CDDIS, along with LAGEOS and Etalon:
 • e.g. http://ilrs.dgfi.badw.de/index.php?id=6
Detail from CoM table for Ajisai

<table>
<thead>
<tr>
<th>Code</th>
<th>Date</th>
<th>Time</th>
<th>Year</th>
<th>Age</th>
<th>Code</th>
<th>Code</th>
<th>NSM</th>
<th>MCP</th>
<th>Volume</th>
<th>Date</th>
<th>Pressure</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>7328</td>
<td>01 04</td>
<td>1997</td>
<td>01</td>
<td>01</td>
<td>2050</td>
<td>35</td>
<td>CSPA</td>
<td>NSM</td>
<td>2.5</td>
<td>8</td>
<td>151023</td>
<td>985</td>
</tr>
<tr>
<td>7335</td>
<td>01 04</td>
<td>1997</td>
<td>01</td>
<td>02</td>
<td>2001</td>
<td>35</td>
<td>CSPA</td>
<td>NSM</td>
<td>2.5</td>
<td>8</td>
<td>151023</td>
<td>985</td>
</tr>
<tr>
<td>7337</td>
<td>01 01</td>
<td>1997</td>
<td>31</td>
<td>03</td>
<td>2001</td>
<td>35</td>
<td>CSPA</td>
<td>NSM</td>
<td>2.5</td>
<td>8</td>
<td>151023</td>
<td>985</td>
</tr>
<tr>
<td>7339</td>
<td>01 04</td>
<td>1997</td>
<td>13</td>
<td>10</td>
<td>2001</td>
<td>35</td>
<td>CSPA</td>
<td>NSM</td>
<td>2.5</td>
<td>8</td>
<td>151023</td>
<td>985</td>
</tr>
<tr>
<td>7355</td>
<td>28 12</td>
<td>1999</td>
<td>31</td>
<td>12</td>
<td>2050</td>
<td>30</td>
<td>CSPA</td>
<td>NC</td>
<td>2.5</td>
<td>15</td>
<td>301023</td>
<td>985</td>
</tr>
<tr>
<td>7356</td>
<td>28 12</td>
<td>1999</td>
<td>31</td>
<td>12</td>
<td>2050</td>
<td>30</td>
<td>CSPA</td>
<td>NSM</td>
<td>2.2</td>
<td>15</td>
<td>301023</td>
<td>990</td>
</tr>
<tr>
<td>7357</td>
<td>30 06</td>
<td>2002</td>
<td>31</td>
<td>12</td>
<td>2005</td>
<td>40</td>
<td>CSPA</td>
<td>NC</td>
<td>2.5</td>
<td>8</td>
<td>151023</td>
<td>985</td>
</tr>
<tr>
<td>7358</td>
<td>25 03</td>
<td>2002</td>
<td>31</td>
<td>12</td>
<td>2050</td>
<td>50</td>
<td>MCP</td>
<td>NC</td>
<td>3.0</td>
<td>1</td>
<td>51025</td>
<td>1015</td>
</tr>
<tr>
<td>7403</td>
<td>10 07</td>
<td>1992</td>
<td>31</td>
<td>12</td>
<td>2050</td>
<td>200</td>
<td>MCP</td>
<td>CFM</td>
<td>3.0</td>
<td>5</td>
<td>101017</td>
<td>1009</td>
</tr>
</tbody>
</table>
Testing the CoM tables during POD

- For the new Ajisai CoM values:
- Used in-house SATAN code as per main AC work, with fixed ITRF2008
- 7-day and 3-day arcs tested for August 2013, with and without (ILRS default is 1010mm) site-specific CoM values
- At best, marginal improvement of ~1% in post-fit residual RMS
LAGEOS/Etalon/Ajisai CoM conclusions

• Important to model as well as possible:
 – Direct impact on TRF scale, a major output from geodetic SLR
• Must consider (small) CoM effects in context with those of some poor site-ties and systematic range measurement error issues
• A more comprehensive comparison for 1980 onwards will be underway soon via AC contributions to ITRF2013
 – Big changes in network hardware in early decades
 – Important to track CoM changes – systematic
• Also it would be very useful to have similar results for Starlette, Stella and LARES...
Thank you