Riga SLR station upgrade and status report

K.Salminsh, M.Abele, J. Del Pino
Institute of Astronomy University Of Latvia

18th International Laser Ranging Workshop
Fujiyoshida, Japan, Nov 11 – 15/2013
13-Po34
SLR station Riga since summer of 2013 is undergoing upgrade of major system components and partial infrastructure renovation. The upgrade will include station time and frequency standard, test and measuring equipment, new telescope control system, installing encoders and other modifications. Other activities include testing of system optical and electronic components to identify underperforming or failing parts. As a part of infrastructure renovation some old instrument buildings will be removed to improve station GNSS antenna performance and to improve measurement of local ties.
Time and frequency reference standard

Old equipment will be replaced by Spectracom SecureSync GPS time standard with rubidium oscillator.
Telescope control system

The telescope control system has to be updated to incorporate encoders and improve tracking accuracy.
SLR system tests

Checking SLR telescope optical system alignment. Other tests are planned to identify failing or underperforming electrical and optical components.
GNSS receiver

New Leica GR25 receiver with GPS, GLONASS and GALILEO tracking capability and AR25 antenna installed on the auxiliary pillar for testing. It will later replace receiver on 12302M002 in IGS/EUREF networks.
Receiver channel optimisation

The aim is to reduce number of optical surfaces in the receiver channel to improve efficiency. Two alternative approaches are under consideration.
Infrastructure renovation

New building for SLR system - 2015?
Current status of upgrade schedule

GNSS receiver Leica GR25 with calibrated AR25 antenna – by the end 2013
Timing and reference frequency standard Spectracom SecureSync – expected by the end of the year 2013
Improved telescope mount model – 2014
Calibration modification - 2014
New telescope control system – 2014/2015 (very optimistic)
Receiver path modification - 2014/2015
Infrastructure repair – 2013/2014

Acknowledgments
This presentation is supported by EU FP7 grant REGPOT-CT-2011-285912-FOTONIKA