NASA SLR Operatinal Network Project Overview

David McCormic

NASA Goddard Space Flight Center, Greenbelt, USA

david.r.mccormick@nasa.gov
SLR Data Quantity

total passes
from July 1, 2012 through June 30, 2013

- HEO
- LAGEOS
- LEO

total satellite pass performance standard is 1500 passes

1500 (ILRS)

SLR Data Quality

LAGEOS RMS
(single shot for satellite pass)
from April 1, 2013 through June 30, 2013

- Meets ALL ILRS guidelines:
 - LAGEOS RMS (1 cm NP Precision)
 - Short term bias stability (2 cm)
 - Long term bias stability (1 cm)

NASA Network Quality
NASA/ILRS Data Operations Center

◆ The NASA DOC advances since the last ILRS workshop

 – Conversion to CRD format processing (May 2012)
 – Daily analysis products require 24/7 connectivity/support
 • Improved redundancy and monitoring capability
 • Hardening of systems and management of processes
 – IT Security to industry standards
 – EDC/CDDIS comparison
 – QC standardization
 – Configuration Management of Hardware/SW/Processes
 – Re-Engineering Project
 • Obsolescence mitigation, process streamlining, reliability
 • Primary computer hot spare, added UPS for FTP server
 • Automation of manual processes, URL interface is planned

Greenbelt Operations Team
NASA Network Stations

- Peru (TLRS3) - Universidad Nacional de San Agustín (3 x 5 shifts)
 - REGINA collocated including survey
 - New LASER, EL axis repair
 - Improved yield
- Hawaii (TLRS4) – University of Hawaii (2 x 5 shifts)
 - Telescope mount refurbishment including survey
- California (MOBLAS 4) – EXELIS (2 x 5 shifts)
 - Site Survey performed
 - Refurbished RADAR

NASA Network Stations

- Australia (MOBLAS 5) – Geoscience Australia (3 x 7 shifts)
 - RADAR at NASA for refurbishment
- South Africa (MOBLAS 6) – HARTRAO (3 x 5 shifts)
 - NASA training 2012
 - Refurbished RADAR
- Maryland (MOBLAS 7) – EXELIS (3 x 5 shifts)
 - Refurbished RADAR
 - Refurbished Mount Slip Ring
 - Supported Successful collocation with NGSLR
 - VLBI Mask (for RFI impingement)
NASA Network Stations

- Tahiti (MOBLAS 8) - CNES, Universite Franciaise du Pacifique
 - Repaired RADAR, servo system, HEO ranging amplifier
 - FTLRS Collocation 2011
 - 2 shift operation 2013

- MLRS – University of Texas, CSR (2 x 5 shifts)
 - Telescope adjustment, Revised controller software
 - Pending: New LASER, Radar refurbishment
 - Continued Leadership in Lunar Ranging and SLR Analysis

NASA Network Stations Upgrades

- Obsolescence Mitigation
 - Limited funding
 - Highest risk components

- RADAR
 - Depot Level Refurbishment, Standardized Configuration
 - Improved Testing and Restricted Operational Modes

- MOBLAS servo system
 - Testing at NASA

- Event timer
 - Replaces time interval counter for all stations
 - Introduction 2014
NASA Lunar Laser Communications Demonstration

- LADEE spacecraft Launched September 6, 2013
 - Lunar Atmosphere and Dust Environment Explorer
- Lunar Laser Ground Terminal
 - ILRS Engineering Station
 - White Sands New Mexico
 - 4ea 15 cm transmitting telescopes
 - 4ea 40 cm reflective receive telescopes
- Passively tracked AJISAI several times allowing identification and correction of software issues
- Actively tracked AJISAI to check boresight alignment
- Immediately communicated with LADEE spacecraft for successful demonstration: 622 MBps downlink

SLR Operations Summary

- NASA SLR Network is functioning well
 - Deployment of obsolete component replacements will reduce risk of major network decline near term
 - Improvements in data quantity and quality are expected in 2014
- ILRS management and data analysis are functioning well
- Goals
 - Reduce risk of network downtime/failures by improving processes and proactively addressing obsolescence etc.
 - Improve data yield and quality
 - Event timer etc.
 - NASA DOC support ILRS daily data delivery with high proficiency
July 8 Wildfire Monument Peak, CA
PHOTO Courtesy of HPWREN

2/4/2013
http://space-geodesy.nasa.gov

Please see our safety Poster!

SLR
SATELLITE LASER RANGING

2/4/2013
http://space-geodesy.nasa.gov