Statistical Studies of the Calibration of the Helwan-SLR Station

Makram Ibrahim

National Research Institute of Astronomy and Geophysics (NRIAG)

Acknowledgement

Department of Physical Electronics - Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic

Makram Ibrahim 17th ILRS 2011, Bad Kotsing, Germany
Aim of Research


i. Description of the calibration technique at Helwan-SLR.


iii. Studies of the results of analysis during two periods using two different photomultipliers.

iv. Computation of the calibration constant,

1) At 2000, after using the new PMT

2) At 1996, using the old PMT.
Introduction

Helwan –SLR Station

Makram Ibrahim

17th ILRS 2011, Bad Kotzting, Germany
Equipments of Helwan-SLR Station

Mount

Stanford SR620, 4 ps of precision

HP-58503B, It is provide the 1pps with accuracy better than 110 ns

Makram Ibrahim

17th ILRS 2011, Bad Krotzing, Germany
The Geometry of the Calibration Setup

- The Geometry of the calibration is shown in fig.
- Both the emitter and receiver are covered.

- The cover of the emitter has a hole followed by mirror to reflect the beam to the target.
- The computation of the calibration constant is the average of 100 returns (echoes).

- For the calibration, the signal strength is adjusted using a neutral density filters in order to receive the signal strength with a known range L/E.

Makram Ibrahim 17th ILRS 2011, Bad Kotzting, Germany
Calibration of the Helwan-SLR Station

- This study concerns on the results of the calibration, which is applied to the Helwan SLR-station in two periods.

- The first period is from Aug. 1991 to Sept. 1997. The PMT of type RCA 31034A has been used.

- The second period is from 1998 to 2008. The PMT Hamamatsu H6533 is in use.

Makram Ibrahim

17 th ILRS 2011, Bad Kotzting, Germany
Results of the Calibration

Typical histogram of the internal calibration of the system.

Makram Ibrahim

17th ILRS 2011, Bad Krotzing, Germany
The Calibrations for all the data (4169) carried out at the period from 1991 to 2008
Calibration using old and new PMT

The calibrations versus the RMS values for all the calibrations carried out by the old PMT in (a) and by the new PMT in (b)

Makram Ibrahim

17th ILRS 2011, Bad Krotzing, Germany
Calibration of the Helwan-SLR Station

The calibrations versus its RMS value for the calibrations carried out at the years 1991 in (a) and 2000 in (b).

Makram Ibrahim

17th ILRS 2011, Bad Kotzting, Germany
## Calibrations for each year

<table>
<thead>
<tr>
<th>Year</th>
<th>Start Date</th>
<th>End Date</th>
<th>Nr of calib.</th>
<th>Avr. RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>3 - Aug</td>
<td>1 - Dec</td>
<td>307</td>
<td>0.177</td>
</tr>
<tr>
<td>1992</td>
<td>17 - Feb</td>
<td>8 - Dec</td>
<td>401</td>
<td>0.181</td>
</tr>
<tr>
<td>1993</td>
<td>28 - May</td>
<td>29 - Sep</td>
<td>453</td>
<td>0.168</td>
</tr>
<tr>
<td>1994</td>
<td>31 - May</td>
<td>24 - Sep</td>
<td>389</td>
<td>0.160</td>
</tr>
<tr>
<td>1995</td>
<td>6 - Jan</td>
<td>11 - Sep</td>
<td>282</td>
<td>0.171</td>
</tr>
<tr>
<td>1996</td>
<td>20 - Jun</td>
<td>18 - Aug</td>
<td>214</td>
<td>0.198</td>
</tr>
<tr>
<td>1997</td>
<td>16 - May</td>
<td>22 - Sep</td>
<td>329</td>
<td>0.175</td>
</tr>
<tr>
<td>1998</td>
<td>13 - May</td>
<td>31 - Dec</td>
<td>428</td>
<td>0.064</td>
</tr>
<tr>
<td>1999</td>
<td>2 - Jan</td>
<td>29 - Dec</td>
<td>418</td>
<td>0.066</td>
</tr>
<tr>
<td>2000</td>
<td>4 - Jan</td>
<td>8 - Nov</td>
<td>320</td>
<td>0.061</td>
</tr>
<tr>
<td>2001</td>
<td>13 - Jan</td>
<td>10 Nov</td>
<td>119</td>
<td>0.068</td>
</tr>
<tr>
<td>2002</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>2003</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>2004</td>
<td>6 - April</td>
<td>28 - Dec</td>
<td>120</td>
<td>0.075</td>
</tr>
<tr>
<td>2005</td>
<td>1-Jan</td>
<td>26- Nov</td>
<td>226</td>
<td>0.077</td>
</tr>
<tr>
<td>2006</td>
<td>30 - Jan</td>
<td>25- Dec</td>
<td>55</td>
<td>0.079</td>
</tr>
<tr>
<td>2007</td>
<td>14 - April</td>
<td>30 - Dec</td>
<td>77</td>
<td>0.077</td>
</tr>
<tr>
<td>2008</td>
<td>27 - Jan</td>
<td>23 - Sep</td>
<td>31</td>
<td>0.074</td>
</tr>
</tbody>
</table>

Tab.1. The calibrations applied to the station during the period from 1991 to 2008.

Makram Ibrahim  
17th ILRS 2011, Bad Kotzting, Germany
The deduced precession of the average single-shot calibration RMS, in millimeters, during the last quarter of 2007.

Makram Ibrahim

17th ILRS 2011, Bad Kotzting, Germany
The deduced precession of the average single-shot calibration RMS, in millimeters, during the last quarter of 2008.

Makram Ibrahim

17 th ILRS 2011, Bad Kotzing, Germany
The system internal delay obtained by calibrating the system during the year 1996 in (a) and 2000 in (b).

Makram Ibrahim  17 th ILRS 2011, Bad Kotzting, Germany
System Internal Delay during 2000

The internal delays carried out by calibrating the system during the year 2000 using the time interval of type HP5370B in (a) and of type SR620 in (b).

Makram Ibrahim 17 th ILRS 2011, Bad Kotzting, Germany
Conclusion

Statistical studies of the calibration of Helwan-SLR station
1) The first period, using the old PMT from 1991 to 1997.

- The average RMS value using the old PMT is found to be 0.174 nsec, while using the new PMT is 0.068 nsec.

- That is, the calibrations produced using the new PMT package are nearly 2.6 times better.

- The average RMS of the years from 1998 to the year 2002 is below 0.07 nsec, while it is higher than 0.07 nsec from the year 2005 till 2008.

- From the measurements of the system delay, it is found that the data obtained during 2000 is more stable than the data obtained in 1996.

- Also, the stability of the system delay obtained using the new time interval is better than the data produced by the old counter.

Makram Ibrahim 17th ILRS 2011, Bad Kotzting, Germany
Thank you
PMT Modification

- In May, 1998 the PMT RCA 31034 was replaced by the PMT Hamamatsu H6533 box with PMT tube 4998.

- It consists of a PMT tube and high voltage with precise divider. The Tennelec TC 952A high voltage power supply with stable 2500 volts is used as a source for the PMT, to obtain standard parameters.

- The old pre-amplifiers HP8447A (400 MHz) and HP8447D (1.3 MHz) have been replaced by EG & G Ortec 1 GHz pre-amplifier Model 9306.

- It is a four-stage preamplifier based on Hewlett Packard MMIC chips. The constant fraction discriminator Ortec 646 were replaced by the Quad Tenellec discriminator TC454.

- The first channel is used for processing the signal from the start detector; the second channel is used for discriminating pulses from the PMT. The time delays of both, i.e. the start and stop channel, were adjusted to the lowest time jitter. The first results shows the mean value of the system calibration is about 58 nsec and time jitter is 50 psec, where the counter HP5370B is used as a ranging counter.

Makram Ibrahim 17th ILRS 2011, Bad Kotzting, Germany