BLITS: spin parameters and its optical response measured by the Graz 2kHz SLR system

Daniel Kucharski1, Georg Kirchner2, Hyung-Chul Lim1, Franz Koidl2

1) Korea Astronomy and Space Science Institute, Republic of Korea
2) Space Research Institute, Austrian Academy of Sciences, Austria

This work was sponsored by:
Austrian Academy of Sciences
Korea Astronomy and Space Science Institute
The BLITS has been designed and manufactured by the FSUE–IPIE (Federal State Unitary Enterprise–Institute for Precision Instrument Engineering, Moscow, Russia).

- experimental verification of the spherical glass retroreflector satellite concept (Luneburg lens)
- obtaining SLR data for the solution of scientific problems in geophysics, geodynamics, and relativity by millimeter and sub-millimeter accuracy range measurements.

BLITS (courtesy of IPIE), left: inner ball lens in the shell, right: assembled body

Mass 7.53 kg
Circular, sun-synchronous orbit:
Altitude: 832km
Inclination: 98.77°

From: Spherical Glass Target Microsatellite. V.D. Shargorodsky, V.P. Vasiliev, M.S. Belov, I.S. Gashkin, N.N. Parkhomenko
Range residuals of BLITS; pass from November 14, 2010 (423 days after launch). Three slots (20 seconds) from different parts of the pass show change of intervals duration. The 0 level is the mean value. The average RMS is 2.77 mm.
Body centered cs:
S – spin cs (Zs – spin axis)
B – body cs (body fixed) (XB – symmetry axis)
α – phase
φ – latitude of symmetry axis
By using simulations we can find spin parameters of the body (spin axis orientation, spin period, φ) for which duration of the simulated intervals coincide the best with the observed values.
BLITS – spin determination

\[\text{RMS} \varphi = 5.85^\circ \]
\[\text{RMS}_{\text{RA}} = 14.7^\circ, \text{RMS}_{\text{Dec}} = 7.02^\circ \]
\[T_{\text{mean}} = 5.613 \text{s}, \text{RMS}_T = 4.77 \text{ms} \]
BLITS – optical response

Return rate vs Elevation

Average RR (El 50°-80°) vs time

BLITS
Attitude: 832 km
Inclination: 98.77°
Cross section: 0.1 \cdot 10^6 m^2

Stella
Attitude: 800 km
Inclination: 98.6°
Cross section: 1.8 \cdot 10^6 m^2

The data contained in this document, without the permission of KASI, shall not be used, duplicated or disclosed, in whole or in part, for any purpose other than ARGO development.
Spin parameters of BLITS were not stable after the launch. The initial, very dynamic, change of the spin axis orientation could be caused by a direct action of the deployment mechanism.

Due to the construction, the optical range correction is constant down to sub-mm level, and is independent on attitude of the satellite. The flat response of BLITS allows for the most accurate range measurements among the SLR satellites, on the accuracy level of the ground target.

Using this successful design instead of classical RRA panels for active missions (CHAMP, GRACE, GOCE) would provide more accurate and stable COM (down to sub-mm), and a wider incident angle between the laser beam and a nadir direction.
-Spin parameters of BLITS were not stable after the launch. The initial, very dynamic, change of the spin axis orientation could be caused by a direct action of the deployment mechanism.

-Due to the construction, the optical range correction is constant down to sub-mm level, and is independent on attitude of the satellite. The flat response of BLITS allows for the most accurate range measurements among the SLR satellites, on the accuracy level of the ground target.

-Using this successful design instead of classical RRA panels for active missions (CHAMP, GRACE, GOCE) would provide more accurate and stable COM (down to sub-mm), and a wider incident angle between the laser beam and a nadir direction.

Thank you!