WLRS: In-Sky-Laser-Safety

J. Eckl, M. Ettl et al.

Geodetic Observatory Wettzell
1. Neccessity and strategies
2. Current WLRS In-Sky-Savety equipment
3. Transponder
4. Conclusion
=> area [a] (1.6→40km) most critical
SLR In-Sky-Laser-Safety Strategies

Eyesave Tracking
- Laserpower
 - Divergence

Objekt Detection
- Active
 - Lidar
 - Radar
- Passive
 - Radar
 - Camera
 - Transponder

Applied at Wettzell Laser Ranging System (WLRS)-Site
WLRS Camera System

- Sky-camera mounted on telescope tubus
- Permanent monitoring through observer

but:

- Dependent on observers interpretation and constitution (night-shift, ...)

19.05.2011
17th Workshop on Laser Ranging
WLRS Camera System

- Sky-camera mounted on telescope tubus
- Permanent monitoring through observer

but:
- Dependent on observers interpretation and constitution (night-shift, ...) → Not "really“ eyesave
• Honeywell Laser Hazard Reduction System (LHRS) as primary WLRS in-sky-safety device
• Officially approved system
• Covers hole range [a] (0.4-40 kilometers)

but:
• Clutter problems
• High acquisition costs
• Honeywell Laser Hazard Reduction System (LHRS) as primary WLRS in-sky-safety device
• Officially approved system
• Covers hole range [a] (0.4-40 kilometers)

but:
• Clutter problems
• High acquisition costs
• Not VLBI 2010 conform !!!
ADS-B

Automatic Dependent Surveillance - Broadcast is a European Aviation Safety Agency (EASA) approved sole working aviation surveillance system. Global implementation for Europe in 2015 [1]
ADS-B: Continuously broadcast GNSS derived position through aircraft undirected (up to 370km range)
Installation of:

• AirNav® RadarBox PRO (500,- €)
• Antenna and amplifier (200,- €)
• Computer MS Windows based
• USB interface
SLR 2.0 integration

• **Idl2rpc** [3] interface

 - ADS-B
 - `idl2rpc server`
 - `ethernet`
 - `idl2rpc client`

• Provided datastream

```
... az: 168.647604016445 el: 4.32813160650332 time: 55692.5650231481 name: MEA202
az: 299.992452458358 el: 1.77236662100212 time: 55692.5650231481 name: TUI982
az: 256.61816360776 el: 1.57259284785065 time: 55692.5650231481 name: DLH61A
az: 168.647604016445 el: 4.32813160650332 time: 55692.5650231481 name: MEA202
az: 299.992452458358 el: 1.77236662100212 time: 55692.5650231481 name: TUI982
az: 256.61816360776 el: 1.57259284785065 time: 55692.5650231481 name: DLH61A
...```

- topocentric elevation angle
- topocentric azimuth angle
- timestamp
- identifier of the plane
To Do

- Verification of aircraft coordinates
- Include avoidance zones for each aircraft
Conclusion

• **ADS-B can not yet replace active radar**
  - still no legally binding for usage in aircraft
  - currently often just used at places where:
    - heavy sky traffic appears
    - no active radar is present

• **Transponder as redundant system**
  - covers hole range \[a\]
  - low cost
  - simple installation
  - network extension planned
Conclusion

• ADS-B can not yet replace active radar
  ↓ still no legally binding for usage in aircraft
  ↓ currently often just used at places where:
    - heavy sky traffic appears
    - no active radar is present

• Transponder as redundant system
  ↓ covers hole range [a]
  ↓ low cost
  ↓ simple installation
  ↓ network extension planned

→ all in all: still no satisfying solution meeting fundamental station requirements

