Direction of the Light Deviation Vector during Satellite Laser Ranging

Yuriy V. Ignatenko¹, Vladimir M. Tryapitsyn¹, Andriy A. Makeyev¹, Igor Yu. Ignatenko²

clogao@rambler.ru

1) Crimean Laser Observatory of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 98635 Katzively, Yalta, Crimea, Ukraine

2) Federal State Unitary Enterprise “National Research Institute for Physical-Technical and Radio Engineering Measurements” (VNIIFTRI), 141570 Mendeleevskoe, Moscow region, Russia

Bad-Kötzing, 2011
Satellite LAGEOS-1 28.07.2007

Projections onto the telescope’s field of view of
1) Measured apparent deviation \mathbf{AB},
2) Vector opposite to velocity aberration $(-\mathbf{AC})=\mathbf{CA}$,
3) True anomalous deviation \mathbf{CB}. Absolute values are in arcseconds, directions are in degrees relatively to the abscissa axis in the field of view. Arrows indicate the start of the pass.

$\mathbf{CB} = \mathbf{AB} + (-\mathbf{AC})$

[Ignatenko et al., Poznań, 2008]
Light Deviation Vector Reconstruction (3D) and Determination of Its Direction in the Near-Earth Space

1) Combination of a three-dimensional vector of anomalous light deviation from its different projections onto the telescope’s field of view in different instants of time during a satellite pass.

2) Elimination of the Earth orbital motion to obtain “pure” light deviation vector in the near-Earth space.
Crucial points’ O, O', S topocentric coordinates determination for 3D light deviation vector reconstruction

$OO' = R$ – range station–satellite,
$O'S = r$ – anomalous deviation of light in the telescope’s focal plane P,
A – azimuth, H – elevation, ψ – rotation angle of the $O'S$ vector in the telescope’s field of view

$O (0,0,0)$; $O' (R \cos H \sin A, R \cos H \cos A, R \sin H)$;
$S (R \cos H \sin A + r (\cos A \sin \psi - \sin A \sin H \cos \psi), R \cos H \cos A - r (\sin A \sin \psi + \cos A \sin H \cos \psi), R \sin H + r \cos H \cos \psi)$
Planes’ P_1 and P_2 equations

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

and their intersection line

$$\frac{x - x_1}{x - x_2} = \frac{y - y_1}{y - y_2} = \frac{z - z_1}{z - z_2}$$

T_1 and T_2 – telescope’s focal planes at two instants of time,

P_1 and P_2 – additional planes perpendicular to T_1 and T_2 for

3D light deviation vector Φ reconstruction
Reconstructed directions of the anomalous light deviation 3D-vector for LAGEOS passes during 2007 and 2008 are shown in the equatorial RA/Dec coordinate system. Each point corresponds to one pass.
Earth velocity direction for June 10

\[\varphi = \frac{2v_\oplus}{c} \approx 41'' \]

Value of the Earth velocity vector in arcseconds

\[\cos AB = \sin \delta_1 \sin \delta_2 + \cos \delta_1 \cos \delta_2 \cos (\alpha_2 - \alpha_1) \]

Arc AB corresponds to an angle between vectors of the anomalous light deviation and of the Earth orbital velocity; \(\alpha \) and \(\delta \) denote their right ascension and declination.
Directions of the purified anomalous light deviation 3D-vector in the near-Earth space (influence of the Earth orbital motion is excluded) are shown in the equatorial RA/Dec coordinate system for LAGEOS passes during 2007 and 2008. Points are located on the ellipse with center coordinates $\alpha = 284^\circ$ and $\delta = 67^\circ$.
Conclusion

According to obtained results it is concluded that the luminiferous medium moves in the near-Earth space with velocity slightly different by absolute value and direction from the Earth orbital velocity. Observed deviation of light from preset direction is a result of composition of the satellite relative-to-observer velocity, the Earth orbital velocity, and velocity of the luminiferous medium.