Constraining Spacetime Torsion with Lunar Laser Ranging, Mercury Radar Ranging, LAGEOS, next lunar surface missions and BepiColombo

Riccardo March1,3, Giovanni Belletini2,3, Roberto Tauraso2,3, Simone Dell’Agnello3,*

1Istituto per le Applicazioni del Calcolo (IAC), CNR, Via dei Taurini 19, 00185 Roma, Italy
2Dipart. di Matematica, Univ. di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
3Italian National Institute for Nuclear Physics, Laboratori Nazionali di Frascati (INFN-LNF), Via Enrico Fermi 40, Frascati (Rome), 00044, Italy

17th International Laser Workshop on Laser Ranging - Bad Koetzting, Germany, May 16-20, 2011

* Presented by S. Dell’Agnello
Outline

• Introduction
• Spacetime torsion predictions
• Constraints with Moon and Mercury
• Constraints with the LAser GEOdynamics Satellite (LAGEOS)
• LLR prospects and opportunities
• Conclusions

• In the spare slides: further reference material
• See also talk of Claudio Cantone (ETRUSCO-2), talk and poster by Alessandro Boni (LAGEOS Sector, Hollow reflector) and, especially, the talk of Doug Currie (LLR for the 21st century)
INFN (brief and partial overview)

- INFN; public research institute
 - Main mission: study of fundamental forces (including gravity), particle, nuclear and astroparticle physics and of its technological and industrial applications (SLR, LLR, GNSS, space geodesy…)

- Prominent participation in major astroparticle physics missions:
 - FERMI, PAMELA, AGILE (all launched)
 - AMS-02, to be launched by STS-134 Endeavor to the International Space Station (ISS) on May 16, 2011

- VIRGO, gravitational wave interferometer (teamed up with LIGO)

- …. More, see http://www.infn.it
INFN-LNF (brief and partial overview)

• Located in Frascati, near Rome, next to ESA-ESRIN (which includes the ASI Science Data Center, ASDC), and to INAF-IFSI. Well connected to Rome airports and train stations
• Large-scale Infrastructure of the “European Research Framework Programme (FP)”
• Largest physics national lab in Italy
 – Several particle accelerator facilities and experiments
 – Gravitational bar antenna
 – Space facility SCF: SLR/LLR Characterization Facility
 – … More, see http://www.lnf.infn.it
INFN: ~2000 employees, very many Univ. associates

19 Sites ("Sezioni") in major cities
11 Associated sites
4 National Labs

VIRGO-EGO European Gravitational Observatory

INFN-LNF

Laboratori del Sud (Catania)
Current SCF research activities

• Our approved projects:
 – **MoonLIGHT-ILN** (LLR) ==> See talk by Doug Currie
 – LLR analysis effort using CfA’s Planetary Ephemeris Program (PEP)
 – **ETRUSCO-2** (SLR of GNSS and LAGEOS) ==> See talks and poster by Claudio Cantone, Alessandro Boni

• Study of new gravitational physics theories: theoretical predictions and experimental test

• We collaborate with:
 – Italian Air Force, ASI-CGS@Matera, University of Maryland, Harvard-Smithsonian Center for Astrophysics (CfA), NASA-GSFC, NASA Lunar Science Institute (NLSI), UCSD, International Lunar Network (ILN) …
SLR/LLR Characterization Facility (SCF)

GPS-II FLIGHT MODEL on roto-translation system; left: aperture for Laser window

LAGEOS Sector

MoonLIGHT/LLRRA21

SCF

AM0 window
IR camera window
Spare window
LASER window
Optical Table
Constraining spacetime torsion with the Moon and Mercury

Theoretical predictions and experimental limits on new gravitational physics

PHYSICAL REVIEW D 83, 104008 (2011)

Constraining spacetime torsion with the Moon and Mercury

We report a search for new gravitational physics phenomena based on Riemann-Cartan theory of general relativity including spacetime torsion. Starting from the parametrized torsion framework of Mao, Tegmark, Guth, and Cabi, we analyze the motion of test bodies in the presence of torsion, and, in particular, we compute the corrections to the perihelion advance and to the orbital geodetic precession of a satellite. We consider the motion of a test body in a spherically symmetric field, and the motion of a satellite in the gravitational field of the Sun and the Earth. We describe the torsion field by means of three parameters, and we make use of the autoparallel trajectories, which in general differ from geodesics when torsion is present. We derive the specific approximate expression of the corresponding system of ordinary differential equations, which are then solved with methods of celestial mechanics. We calculate the secular variations of the longitudes of the node and of the pericenter of the satellite. The computed secular variations show how the corrections to the perihelion advance and to the orbital de Sitter effect depend on the torsion parameters. All computations are performed under the assumptions of weak field and slow motion. To test our predictions, we use the measurements of the Moon’s geodetic precession from lunar laser ranging data, and the measurements of Mercury’s perihelion advance from planetary radar ranging data. These measurements are then used to constrain suitable linear combinations of the torsion parameters.
Spacetime torsion described at order higher than MTGC, by three dimensionless torsion parameters, t_1, t_2, t_3 (we added t_3 compared to MTGC). General approach, no specific model assumed.

These 3 parameters (and the other, frame dragging parameters, described in the next slides) combine with the PPN to determine the gravitational physics of several types of solar system natural bodies and artificial satellites.

Therefore, we used data from past and present space missions to test (to limit, to constraint) the torsion parameters. We also showed how future mission will improve this search.

Value of t_1 fixed by imposing validity of newtonian limit of the theory.

We demonstrated that Mercury’s perihelion precession depends on torsion, unlike in the MTGC paper.
Constraining spacetime torsion with the Moon and Mercury
Theoretical predictions and experimental limits on new gravitational physics

Extension of work by Y. Mao, M. Tegmark, A. H. Guth and S. Cabi, PRD 76, 1550 (2007) [indicated ad MTGC] and correction of their error on Mercury’s perihelion advance

LLR measurement of the lunar geodetic precession (deviation from general relativity):

\[K_{gp} = -0.0019 \pm 0.0064 \]

MRR measurement of Mercury perihelion precession (deviation from general relativity):

0.1% accuracy on \((\beta - 1)\)

Constraining spacetime torsion with the Moon, Mercury, Gravity Probe B, more MRR data and BepiColombo

If Nordtvedt effect assumed: with LLR $|\beta-1| < 1.1 \times 10^{-4}$ (PRL 93, 261101 (2004)) \Rightarrow direct limit on $t_3 + 2 t_2$

Geodetic precession (GP) plays special role, because measured with very different techniques:

- Continuing LLR of Apollo/Lunokhod and by high accuracy APOLLO
- Next lunar surface missions
- New, better LLR payloads
- GPB
- BepiColombo (ESA, JAXA …)

Further improvements:

- 10 years of MRR data taken after 1990 and so far not analyzed
Constraining spacetime torsion with BepiColombo

Further improvements with BepiColombo:

- GP for Mercury is larger, ~20"/cy compared to ~2"/cy for the Moon
- Two orbiters very precisely tracked by radio science (RS, @cm level)
- Several years of mission
- New MRR, simultaneous with BepiColombo, would greatly protect from systematic effects from the two techniques (MRR, RS), whose space segment, at least, is dramatically different (orbiters and planet itself)

Physics papers on BepiColombo:
Gedetic Precession needs to be subtracted to measure both Lense-Thirring (LT) effect and to set torsion limits with LAGEOS. GPB, instead, has measured separately GP & LT

GPB and LAGEOS are complementary LT and torsion experiments. They constrain different linear combinations of 5 additional parameter of the theory, which describe additional FRAME DRAGGING due to SPACETIME TORSION:

\[w_1 + w_2 + w_3 - 2w_4 + w_5 \] (GPB)

\[\frac{(w_2 - w_4)}{2} \] (LAGEOS, node)

Using published 10% accuracy on LT (Ciufolini, Pavlis 2004)
GPB and LAGEOS constrain different linear combinations of the 5 FRAME DRAGGING TORSION PARAMETERS:

\[w_1 + w_2 + w_3 - 2w_4 + w_5 \text{ (GPB)} \]

\[0.11w_1 - 0.20w_2 - 0.06w_3 + 0.20w_4 + 0.06w_5 \text{ (LAGEOS, node+perigee)} \]

Using published 32% accuracy on LT (D. Lucchesi), and 1998 measurement of LT (Ciufolini et al)
International Lunar Network (ILN) concept

http://iln.arc.nasa.gov/ Nine Countries

Lunar Geophysics Network (LGN) of multi-site simultaneously operating instruments:

– Seismometer
– Thermal heat flow probe
– E&M Sounder
– Lunar Laser Ranging payload

40 years of ‘LLR’ test of General Relativity

(Logo by NASA)
LLR O-C residuals’ analysis with PEP

MacDonald station on Apollo 15 array
\(|(O-C)_i - (O-C)_j| \) for all arrays \(i,j \) with PEP

Sensitive to station accuracy, Earth rotations and Lunar librations

10\(^{-8}\) sec

10\(^{-10}\) sec

APOLLO station
LLR prospects and opportunities

- **NASA PSD** (Planetary Science Division) plan to respond to Decadal Survey, recommendations for the Moon:
 - Lunar Geophysics Network (LGN), following the ILN concept, identified as one of the two priorities for a ‘New Frontier’ mission
- Other lunar landing missions, like JAXA’s Selene-2

- New experimental frontier:
 - Univ. of Maryland (PI) and INFN-LNF are developing a new generation LLR uncoated payload since several years, LLRRA21/MoonLIGHT, see talk by D. Currie
 - INFN-LNF is **DOUBLING the SCF** (= SCF + SCF-G) and **EXTENDING the power of the SCF-Test** significantly
Highlights

Talks were held while, at the same time, 24x7 shifts were done in Frascati by the LNF group to SCF-Test the “MoonLIGHT/LLRRA21” cube corner retroreflector (solid, Suprasil 1, 100 mm diameter)!!

On that same night, in Matera, MLRO observed 6 LLR Normal Points!! Analysis is in progress in the US and Italy…
Frascati 2nd Generation LLR Mini-workshop photo

March 25, 2010, outside the SCF lab, during 24x7 shifts for the SCF-Test of the “MoonLIGHT/LLRRA21” CCR

Small photos: people absent, on SCF night shifts or training for flight STS-134, May 16, 2011
Conclusions
Spacetime torsion: a practical example of search for new physics with solar system experiments

In conclusion, our two papers and MTGC’s show that a new gravitational model described by several parameters can be tested by a combination of different solar system experiments and experimental techniques, like:

- LLR
- MRR
- GPB gyros
- LAGEOS
- Lunar Geophysics Network (realization of the ILN concept)
- BepiColombo mercury orbiters.

We do not know where new (gravitational) physics will manifest itself and how. This study, continuing the work by MTGC and extending the PPN formalism, shows a practical example to tackle this challenging, but important tasks, even in the difficult case of several parameters.
Main Reference Documents

- [RD-8] International Lunar Network (http://iln.arc.nasa.gov/), Core Instrument and Communications Working Group Final Reports:
 - http://iln.arc.nasa.gov/sites/iln.arc.nasa.gov/files/ILN_Core_Instruments_WG_v6.pdf
 - http://iln.arc.nasa.gov/sites/iln.arc.nasa.gov/files/WorkingGroups/WorkingGroups2.pdf
LLR: Precision Tests of General Relativity

Best test with a single experiment

- **Best** measurement of relativistic geodetic precession of lunar orbit, a true three-body effect (3m ± 1.9 cm)/orbit (0.64% error)
- Violation of: Weak (composition dependent) and, through the Nordtvedt effect, Strong Equivalence Principle (related to gravitational self-energy)
- Parametrized Post-Newtonian (PPN) parameter β, measures the non-linearity of gravity. In RG $\beta=1$
- Time variation of universal gravitational constant G
- **Best** tests inverse square law ($1/r^2$)

<table>
<thead>
<tr>
<th>Science measurement</th>
<th>Time scale</th>
<th>1st Generation accuracy (cm)</th>
<th>2nd Gen 1 mm</th>
<th>2nd G. 0.1 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameterized Post-Newtonian (PPN) β</td>
<td>Few years</td>
<td>$</td>
<td>\beta-1</td>
<td><1.1 \times 10^{-4}$</td>
</tr>
<tr>
<td>Weak Equivalence Principle (WEP)</td>
<td>Few years</td>
<td>$</td>
<td>\Delta a/a</td>
<td><1.4 \times 10^{-13}$</td>
</tr>
<tr>
<td>Strong Equivalence Principle (SEP)</td>
<td>Few years</td>
<td>$</td>
<td>\eta</td>
<td><4.4 \times 10^{-4}$</td>
</tr>
<tr>
<td>Time Variation of the Gravitational Constant</td>
<td>~5 years</td>
<td>$</td>
<td>\dot{G}/G</td>
<td><9 \times 10^{-13}\text{yr}^{-1}$</td>
</tr>
<tr>
<td>Inverse Square Law (ISL)</td>
<td>~10 years</td>
<td>$</td>
<td>\alpha</td>
<td><3 \times 10^{-11}$</td>
</tr>
</tbody>
</table>

SLR/LLR work by the SCF Team

- **First-ever** SCF-Test of:
 - GPS-II retroreflector array **flight model** property of UMD
 - GLONASS and Galileo’s **GIOVE**-A and -B retroreflector prototype by V. Vasiliev
 - **LAGEOS** Sector **engineering model** property of NASA-GSFC
 - **Hollow** retroreflector prototype provided by GSFC
 - **Galileo IOV** retroreflector prototype property of ESA
 - New generation **LLR** retroreflector, for:
 - First manned landing - 2006 NASA LSSO Program (the beginning of U. of Maryland and INFN-LNF collaboration LLRRA21/MoonLIGHT)
 - Two ASI studies, including MAGIA for Phase A
 - NLSI “CAN” Project (LUNAR, Directed by J. Burns)
 - Response to NASA’s ILN anchor nodes Request For Info (RFI)
 - Response to ESA’s RFI for lunar lander
ET-2 Poster.

Intl. team:
- ILRS,
- UMD,
- CfA,
- GSFC,
- UCSD,
-

GNSS in Near Earth Orbits

ETRUSCO 2
(Extra Terrestrial Ranging to Unified Satellite Constellations)
Activity for NASA/ASI: LLRRA21/MoonLIGHT

Lunar Laser Ranging Retroreflector Array for the 21st century (US) / Moon Laser Instrumentation for General relativity High-accuracy Tests (It)

The US-Italy LLRRA21/MoonLIGHT Team

D. G. Currie (US PI)
University of Maryland at College Park, MD, USA

INFN-LNF, Frascati (Rome), Italy

T. Murphy
University of California at San Diego (UCSD), CA, USA

G. Bianco
ASI - Centro di Geodesia Spaziale (CGS) “G. Colombo”, Matera, Italy

J. Battat
MIT, USA

J. Chandler
CfA, USA

R. Vittori
ESA-EAC and Aeronautica Militare Italiana, Rome, Italy

D. Carrier
Lunar GeoTechnical Institute, Lakeland, Florida, USA

APOLLO Lunar Laser-Ranging Observatory (T. Murphy et al), UCSD, USA

ASI-CGS, Matera Laser-Ranging Observatory (G. Bianco et al), ASI, ITALY

R&D supported by INFN, by NASA contracts and ASI
MAGIA phase A study
One past activity for ASI by INFN-LNF
(not an SCF-Test)

• Industrial optical FFDP acceptance test, in-air and isothermal conditions, of 110 flight reflectors manufactured by Zeiss for the LARES mission
 – Accomplished by INFN-LNF in 3 working weeks before Christmas 2008:
 • At the optics lab with 633 nm wavelength
 • 15 days, enormous amount of retroreflector handling by LNF team, no casualty, completely successful
 – 110 retroreflectors accepted and paid by ASI, on the basis of this test activity by INFN-LNF
 – THIS WAS ONLY AN FFDP TEST IN AIR AND ISOTHERMAL CONDITIONS; NOT AN SCF-TEST
 – ASI reference document: DC-OSU-2009-012