16 years of LAGEOS-2 Spin Data from launch to present

Daniel Kucharski, Georg Kirchner, Franz Koidl
Space Research Institute
Austrian Academy of Sciences
16th International Workshop on Laser Ranging, Poznań, Poland
LAGEOS missions

LAGEOS–1 and LAGEOS–2
mission parameters

<table>
<thead>
<tr>
<th></th>
<th>LAGEOS-1</th>
<th>LAGEOS-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsor</td>
<td>United States</td>
<td>United States and Italy</td>
</tr>
<tr>
<td>COSPAR ID</td>
<td>7603901</td>
<td>9207002</td>
</tr>
<tr>
<td>Launch Date</td>
<td>May 4, 1976</td>
<td>October 22, 1992</td>
</tr>
<tr>
<td>Orbit</td>
<td>circular</td>
<td>circular</td>
</tr>
<tr>
<td>Inclination</td>
<td>109.84 degrees</td>
<td>52.64 degrees</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>0.0045</td>
<td>0.0135</td>
</tr>
<tr>
<td>Perigee</td>
<td>5,860 km</td>
<td>5,620 km</td>
</tr>
<tr>
<td>Weight</td>
<td>406.965 kg</td>
<td>405.38 kg</td>
</tr>
</tbody>
</table>
LAGEOS spin

- Two measurement techniques
 - Photometry (L1:29 and L2:463 – LOSSAM)
 - SLR

- Full Rate Data of SLR measurements (Global Data Centers)
Frequency analysis of SLR FR Data Spinning satellite

L2 pass from Graz kHz SLR station – 15th of March 2004
Frequency analysis has been applied to all FR Data sets (LAGEOS–1 and LAGEOS–2) of all SLR stations and to Graz kHz SLR data sets of LAGEOS–2.

- **LAGEOS–1**

 6th Sep 1983 – 25th July 1993

 >10k spin period values

- **LAGEOS–2**

 >15k spin period values
Accuracy

- Decreasing of accuracy is caused mainly by increasing of spin period
- Longer spin period = less revolutions per pass = weaker frequency signal
Apparent spin

\[f_{\text{app}} = f_{\text{inertial}} + f_{\text{geom}} \]
- Initial spin period determination
- LAGEOS–1, exponential trend function, $T_{0L1} = 0.61 \text{ s}$

\[y = 0.610023 e^{0.330047x} \]

$R^2 = 0.999555$
- Initial spin period determination
- LAGEOS-2, 137 spin points approximated by linear function (RMS=0.228 ms), $T_{0L2}=0.906$ s
- Is the spin period increasing with a constant rate?

- L2 spin period changes: percent of change between points separated by 500 days
- Long term oscillation of the rate of spin period change

- L2 spin period changes: percent of change between points separated by 90 days

- Long term oscillation period: $T_{L2-Long} = 578$ days
- Short term oscillation of the rate of spin period change

- L2 spin period changes: percent of change between points separated by 30 days

- Short term oscillation period: $T_{L2-Short} = 103$ days
LAGEOS spin – data processing

- Long term oscillation of the rate of spin period change

- L1 spin period changes: percent of change between points separated by 500 days (left) and 90 days (right)

- Long term oscillation period: $T_{L1-\text{Long}} = 846$ days
Comparison between L1 and L2

\[T_{0\text{L1}} = 0.61 \text{s} \quad T_{0\text{L2}} = 0.906 \text{s} \]

\[\frac{T_{0\text{L2}}}{T_{0\text{L1}}} = 1.485 \]

\[T_{\text{L1-Long}} = 846 \text{ days} \quad T_{\text{L2-Long}} = 578 \text{ days} \]

\[\frac{T_{\text{L1-Long}}}{T_{\text{L2-Long}}} = 1.464 \]
• Comparison between L1 and L2
- SLR is a perfect (very efficient) tool for sat-spin determination
- HRR systems allow to calculate T with an order of magnitude better accuracy than 10Hz systems, AND allow to extend max investigated T from 150s to 700s
- All the results presented here are in very good agreement with LOSSAM
- T of L1 and L2 is not increasing with a constant rate, but is oscillating with a period depending on initial spin rate of the body.
- The oscillations are caused by Earth’s gravitational field which is changing spin axis orientation of the satellites. This affects the rate of spin period changes of the spacecrafts.
- The evolution of T contains information about forces which are causing perturbation of the orbits. Now for the first time accurate determination of long series of spin period values can be used to upgrade models of all those forces.
The next target

AJISAI – 22 years of data! – from launch till now

Thank you