The New 100–Hz Laser System in Zimmerwald: Concept, Installation, and First Experiences

Werner Gurtner
Eugen Pop
Johannes Utzinger

Astronomical Institute, University of Bern, Switzerland

16th International Workshop on Laser Ranging
13–17 October 2008
Poznan
Evaluation of the new laser

- Higher repetition rate: 100Hz to few kHz
- Pulse length < 40ps
- Participation in one-way ranging and transponder experiments
 - → back to Nd:YAG (532 nm)
 - → single pulse energy not too low

- Call for tender December 2006 for Nd:YAG–System
- Four offers:
 - 3 kHz systems (High Q, Time Bandwidth, Expla)
 - 1 100 Hz system (Thales)

- Decision: 100 Hz system by Thales with Time Bandwidth Oscillator
Rationale for Decision

- **100 Hz good compromise**
 - Limit number of returns to strong targets
 - Total energy: >800 mJ per second (532 nm)
 - Single-shot applications still possible (8 mJ per pulse)
 - Flexibility in applications (firing rate, synchronization)
 - E.g., 28 Hz for LRO
 - Diode-pumped. Promises very stable operation
 - Monostatic system: Protection of the receiver against backscatter (rotating shutter possible: modulation 100%)

- **Two-color ranging: Outcome was not overwhelming**
 - Still possible at 1064 nm (pending suitable sensors)
 - Total energy: 1.8 J per second (green + IR)!
Protection of the receiver

- Monostatic system
- Protect receiver (SPAD / PMT) from backscatter
- 10 Hz: Rotating shutter
- 100 Hz:
 - Liquid crystal shutter
 - Response time ca. 100 µs
 - Max. transmission 30 %
 - LC optical gate with polarizer (Degnan)
 - Response time ca. 10 µs
 - Max. transmission 90%
 - Rather bulky for our system
 - Boost up rotating shutter (600 → 3000 or 6000 rpm)
 - Max. transmission 100%
Upgrade History

- Laser ordered end of March 2007 (Delivery: Oct. 2007)
- Additional components:
 - Rotating shutter: Inhouse design and fabrication
 - New optical components for 532/1064 nm: Mid 2007 till early 2008
 - PC card with FPGA by Graz Observatory: Fall 2007
 - Pulse distribution comparators (FH Deggendorf): Early 2008
- Implementation of FPGA card and rotating shutter
- Observation with old system until Feb 2008
- Installation new Laser: March/April 2008 (!)
- First echos: April 7 / Routine operation: April 24
Upgrade Costs

- Laser: EUR 270,000.–
- System modifications: 70,000.–
 - New coatings
 - Optical components
 - Electronic components
- Total: 340,000.–
Laser: Main Specifications (1)

- Technology: Diode pumped solid state laser (DPSSL)
- Pulse generation: SESAM technology oscillator (SEmiconductor Saturable Absorber Mirror)
- Wavelengths: 1064 + 532 nm (Nd:YAG)
- Pulse rate: 90–110 Hz, adjustable with external trigger. Additional decimation with pockels cell
- Configuration: Oscillator, regenerative amplifier, multipass amplifier (actual: double pass)
- Pulse energy: >20 mJ @ 1064 nm (actual: 18 mJ)
 10 mJ @ 532 nm (actual: 8.3 mJ)
- Pulse width: < 40 ps (FWHM) (actual: 58 ps)
Far-field distribution @ 532 nm

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5% Width Horiz (μm)</td>
<td>57.8</td>
<td>57.94</td>
</tr>
<tr>
<td>13.5% Width Vert (μm)</td>
<td>68.1</td>
<td>68.52</td>
</tr>
</tbody>
</table>
Laser: Main Specifications (2)

- Pulse contrast: $< 1/200$
- Beam diameter: 6 mm
- Stability of energy: $< 1\%$
- Pointing stability: < 5 arc sec
Laser: Main Components

- Oscillator (100 MHz)
- Regen
- Doublepass Amplifier
- Attenuator
- SHG (KTP)
- Beam splitter 0–100 %

Max. 18 mJ
Max. 8.3 mJ
2–98 % transm.
18 mJ
Transmit/Receive Switch Mirror

- Laser side: AR coating
- Telescope side: Rmax coating plus elliptic AR coating
Rotating Shutter (1)

- **Task: mechanical range gate / window**
 - Protects the receiver from backscatter during satellite ranging
 - Opens receiving path only for expected returns

- **Disk with two holes right after the field stop (pinhole)**
 - → Rotating frequency: 50 Hz (=3000 rpm)
 - → Speed (r=70mm): 22 mm/ms (=79 km/h)
 - → Hole Diameter: 6 mm (open for 280 μs)
 - Driven by DC Servo motor with integrated controller operated in stepper mode

- **Tests in closed-loop control showed:**
 - Epoch of shutter wrt to return +−50 μs (1% of 10ms)
Rotating Shutter (2)

- **Shutter control (by Control PC via FPGA card)**
 - Phase and frequency depending on current ranging parameters

- **Shutter safety monitor (hardware implemented)**
 - Assures that shutter is unintendedly opened at firing time
 - Checks speed and position 2 ms before firing time.
 - Blocks laser if conflict to be expected
 - 1) by disabling pockels cell (Regen)
 - 2) by fast mechanical shutter
Rotating Shutter (3)

- Photo sensor 3 „OPEN“
- Photo sensor 1+2 for prelim. speed and position check
- 2 holes
- 16 cm
PC Interface Card with FPGA

- Built/programmed by TU Graz (F. Koidl)
- Main functions:
 - Laser firing rate (Period: 9 to 11 ms, Res: 10 μs)
 - Digital range gate/window (2 ch.) (Res: 5 ns)
 - Clock for current epoch (Res: 1 μs)
 - Rotating shutter open pos. epoch (Res: 1 μs)
 - Var. frequency generator for rotating shutter control
 - Laser firing pre-pulses (rot. shutter safety monitoring)
 - Control register to enable
 - Laser pump diodes / Pockels cell / Safety shutter etc.
 - Several auxiliary I/O channels
FPGA PC card (ISA–Bus)

1 PPS 10 MHz

4x8 Out

3x8 Inp

FPGA

3 cm

ISA–Bus

20 cm
Laser Control

● Provided by Thales Laser:
 ▪ FPGA based control unit with clock generator
 ▪ Special notebook with LabView user interface for
 • Individual (manual) control of laser components
 - Oscillator, Amplifiers, Masterclock, Control unit
 • TCP/IP server component

● Client program on Linux station computer
 ▪ Connection by TCP/IP over LAN
 ▪ Control commands and status requests
 ▪ Laser ON, OFF, Status, Error resets

● Firing order and pockels cell control by electrical signals from FPGA card on request by Control PC
Range Gate Control (Control PC<-->FPGA)

- FPGA: generates firing order (defined by Control PC)

- PC: For each laser pulse (100 Hz cycle time):
 - Waits for start pulse flag from FPGA card
 - Immediately reads start epoch
 - Computes expected stop pulse epoch from actual start epoch and range prediction
 - Sends stop pulse epoch to FPGA
 - Keeps start and expected stop pulse epochs in ring buffer for later use

- FPGA generates range gate (SPAD) and window (PMT)
Overlap Avoidance

- **100 Hz:** Whenever flight time is multiple of 10 ms:
 - Stop pulse arrives at same time as a start pulse is generated
 - Receiver will see backscatter of start pulse
 - Receiver could be damaged or at least measurement made impossible

- Avoid overlaps:
 - Cut out parts of the passes (about 5 percent loss)
 - Adjust firing epochs by inserting short delays (Graz)
 - Change firing rate once shortly before overlap would occur (by Control PC via FPGA card)
Calibrations (old – new system)

Old
423 nm

New
532 nm

RMS = 80ps

RMS = 35ps
Range Precision: Good Target

Satellite: Champ

Single-shot RMS
34 ps = 5.1 mm
Single photon regime
Range Precision: Good Target

Satellite: Champ, single-photon mode

SPAD-generated asymmetry

Single-shot RMS
34 ps = 5.1 mm
Range Precision: Lageos

- Asymmetry from target structure
- SPAD-generated asymmetry
- Single-shot RMS
 77 ps = 11.5 mm

Target signature (retroreflectors at different target depths) plus SPAD asymmetric behaviour
Performance on GNSS Satellites (Glonass)

<table>
<thead>
<tr>
<th>Bin Number</th>
<th>Number of Obs per Bin</th>
<th>Residual (ns)</th>
<th>RMS (mm)</th>
<th>Residual (mm)</th>
<th>RMS (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>575</td>
<td>0.007</td>
<td>0.007</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>2</td>
<td>1348</td>
<td>0.000</td>
<td>0.005</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>1320</td>
<td>0.003</td>
<td>0.005</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>786</td>
<td>-0.018</td>
<td>0.006</td>
<td>-2.8</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>1312</td>
<td>-0.001</td>
<td>0.003</td>
<td>-0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>2434</td>
<td>-0.002</td>
<td>0.002</td>
<td>-0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>7</td>
<td>970</td>
<td>-0.003</td>
<td>0.004</td>
<td>-0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>8</td>
<td>1918</td>
<td>0.003</td>
<td>0.003</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>9</td>
<td>3884</td>
<td>0.001</td>
<td>0.002</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>3577</td>
<td>-0.002</td>
<td>0.002</td>
<td>-0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>11</td>
<td>3769</td>
<td>0.002</td>
<td>0.002</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>12</td>
<td>3074</td>
<td>-0.001</td>
<td>0.002</td>
<td>-0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>13</td>
<td>2217</td>
<td>0.004</td>
<td>0.003</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>14</td>
<td>3302</td>
<td>0.001</td>
<td>0.002</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>15</td>
<td>2832</td>
<td>-0.002</td>
<td>0.002</td>
<td>-0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>16</td>
<td>3040</td>
<td>0.000</td>
<td>0.002</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>17</td>
<td>1703</td>
<td>0.003</td>
<td>0.003</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>18</td>
<td>1589</td>
<td>-0.006</td>
<td>0.003</td>
<td>-0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>19</td>
<td>1691</td>
<td>-0.002</td>
<td>0.003</td>
<td>-0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>3460</td>
<td>0.005</td>
<td>0.002</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>21</td>
<td>2594</td>
<td>-0.009</td>
<td>0.002</td>
<td>-1.3</td>
<td>0.3</td>
</tr>
<tr>
<td>22</td>
<td>2699</td>
<td>0.001</td>
<td>0.002</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>23</td>
<td>475</td>
<td>0.003</td>
<td>0.005</td>
<td>0.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Maximum 13 % return rate

Up to 4000 returns per normal point
Performance on GNSS Satellites (Giove-A)

<table>
<thead>
<tr>
<th>Bin Number</th>
<th>Number of Obs per Bin</th>
<th>Residual (ns)</th>
<th>RMS (mm)</th>
<th>Residual (ns)</th>
<th>RMS (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53</td>
<td>0.005</td>
<td>0.016</td>
<td>0.8</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>104</td>
<td>-0.024</td>
<td>0.007</td>
<td>-3.6</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>1655</td>
<td>-0.003</td>
<td>0.002</td>
<td>-0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>115</td>
<td>0.011</td>
<td>0.006</td>
<td>1.6</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>1271</td>
<td>0.002</td>
<td>0.002</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>6</td>
<td>2368</td>
<td>0.006</td>
<td>0.002</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td>1834</td>
<td>-0.003</td>
<td>0.002</td>
<td>-0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>1152</td>
<td>0.003</td>
<td>0.002</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>9</td>
<td>830</td>
<td>-0.003</td>
<td>0.003</td>
<td>-0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>1628</td>
<td>-0.014</td>
<td>0.002</td>
<td>-2.1</td>
<td>0.3</td>
</tr>
<tr>
<td>11</td>
<td>117</td>
<td>0.010</td>
<td>0.007</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>12</td>
<td>1063</td>
<td>0.006</td>
<td>0.003</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>13</td>
<td>2510</td>
<td>0.006</td>
<td>0.002</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>14</td>
<td>1682</td>
<td>0.004</td>
<td>0.002</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>15</td>
<td>1606</td>
<td>-0.003</td>
<td>0.002</td>
<td>-0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>16</td>
<td>2353</td>
<td>-0.006</td>
<td>0.002</td>
<td>-0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>17</td>
<td>294</td>
<td>-0.002</td>
<td>0.006</td>
<td>-0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>18</td>
<td>1772</td>
<td>0.003</td>
<td>0.002</td>
<td>0.5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

18 normal points stored. Bin width: 300 sec

Maximum 8% return rate
Performance on GNSS Satellites (GPS–36)

<table>
<thead>
<tr>
<th>Bin Number</th>
<th>Number of Obs per Bin</th>
<th>Residual (ns)</th>
<th>RMS (mm)</th>
<th>Residual (mm)</th>
<th>RMS (mm)</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>391</td>
<td>0.002</td>
<td>0.002</td>
<td>0.3</td>
<td>0.3</td>
<td>80 deg elev</td>
</tr>
<tr>
<td>2</td>
<td>947</td>
<td>0.000</td>
<td>0.001</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2437</td>
<td>-0.001</td>
<td>0.001</td>
<td>-0.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2861</td>
<td>0.000</td>
<td>0.001</td>
<td>0.0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2870</td>
<td>0.001</td>
<td>0.001</td>
<td>0.2</td>
<td>0.1</td>
<td>Maximum 9% return rate</td>
</tr>
<tr>
<td>6</td>
<td>543</td>
<td>0.003</td>
<td>0.002</td>
<td>0.4</td>
<td>0.3</td>
<td>70 deg elev</td>
</tr>
<tr>
<td>7</td>
<td>1835</td>
<td>-0.002</td>
<td>0.001</td>
<td>-0.3</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>161</td>
<td>0.001</td>
<td>0.003</td>
<td>0.2</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2127</td>
<td>-0.001</td>
<td>0.001</td>
<td>-0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1213</td>
<td>0.000</td>
<td>0.001</td>
<td>-0.1</td>
<td>0.2</td>
<td>60 deg elev</td>
</tr>
<tr>
<td>11</td>
<td>840</td>
<td>-0.001</td>
<td>0.002</td>
<td>-0.1</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1053</td>
<td>-0.001</td>
<td>0.002</td>
<td>-0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1699</td>
<td>0.003</td>
<td>0.001</td>
<td>0.5</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1336</td>
<td>0.001</td>
<td>0.001</td>
<td>0.1</td>
<td>0.2</td>
<td>50 deg elev</td>
</tr>
<tr>
<td>15</td>
<td>1912</td>
<td>0.001</td>
<td>0.001</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1965</td>
<td>-0.004</td>
<td>0.001</td>
<td>-0.6</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>413</td>
<td>0.005</td>
<td>0.003</td>
<td>0.8</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1511</td>
<td>0.000</td>
<td>0.001</td>
<td>0.0</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>390</td>
<td>0.005</td>
<td>0.003</td>
<td>0.7</td>
<td>0.4</td>
<td>40 deg elev</td>
</tr>
</tbody>
</table>
Summary

- 100 Hz Nd:YAG solid state laser system
 - Stable energy and pointing

- 8.3 mJ / pulse @ 532 nm with excellent far field profile
 - Suitable for one-way ranging and transponder experiments

- Single shot RMS: 35 ps / 5 mm @ 532 nm for good targets

- Up to 13% RR on high satellites
 - Observation also possible through haze or thin cirrostratus

- Backscatter protection with 100% modulation (rot. Shutter)
 - PMT are also possible detectors

- Prepared for two-colour ranging
 - if a suitable detector is available in future
End

Thank you!
Timing system

- **Time Base**
 - 5MHz Quartz + Freq. Doubler (Oscilloquartz SA, Neuenburg) free running, compensated only once per day for aging (New: 10 MHz Quartz implemented shortly)
 - 10MHz distribution (FH Deggendorf)
 - Divider chain and distribution for clock pulses
 - 1 PPS
 - 100 PPS
 - Other rates
 - GPS timing receiver (Truetime) for synchronization by time comparison

- **Event timer for start and stop epochs (Riga)**
Rotating Shutter
Status End of 2007

- **Two-color 10 Hz system (Ti:Saph–Laser)**

- **Accuracy**
 - Single-shot 10 mm blue (423nm), 20–25 mm IR (846nm)
 - Range biases: Blue < 1 cm, IR < 2 cm
 - Bias between blue and IR 10–15 mm: Origin probably internal IR calibration

- **Maintenance and operation**
 - Relatively high maintenance costs of laser
 - Aging of components, difficulty with spare parts
 - Frequent readjustments (every day or every few days)

- **Availability**
 - Ca. 11 months per year
Pulse contrast at 532 nm

4 nm 1:650 14 nm 1:195

Measure | P1: pkp(kC2) | value | 5.13 V |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>5.0811 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>4.91 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>5.30 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sdev</td>
<td>33.7 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>num</td>
<td>206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>status</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C2 DC1M

- 2.00 mV/div
- 6.000 mV

- 0.00 mV
- 7.70 mV

C2 DC1M

- 5.00 mV/div
- 15.00 mV

- 0.00 mV
- 26.05 mV
Measurement of the pulse width

<table>
<thead>
<tr>
<th>Diode current (A)</th>
<th>Pulse width (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>54.7</td>
</tr>
<tr>
<td>1.1</td>
<td>52.6</td>
</tr>
<tr>
<td>1.2</td>
<td>53.2</td>
</tr>
<tr>
<td>1.3</td>
<td>54.9</td>
</tr>
<tr>
<td>1.4</td>
<td>54.9</td>
</tr>
<tr>
<td>1.5</td>
<td>56.9</td>
</tr>
<tr>
<td>1.6</td>
<td>58.3</td>
</tr>
<tr>
<td>1.7</td>
<td>60.9</td>
</tr>
<tr>
<td>1.8</td>
<td>60.4</td>
</tr>
<tr>
<td>1.9</td>
<td>62.8</td>
</tr>
<tr>
<td>2.0</td>
<td>61.3</td>
</tr>
</tbody>
</table>