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Testing Grav‘ity
« Gravity is the most poorly- tested of the fundamental forces

— owing to its relative weakness

— how do we reconcne the mcompatlblllty i graV|ty and quantum
mechanics?.

— is the apparent acceleration of the.universe a consequence of our not
understanding Iarge -scale graV|ty’?

« Lunar Laser Ranging (LLR) provldes many of our most incisive
tests of gravity ! :
— tests Weak Equwalence Prlnc;lple to Aa/a < 10- 13
— teststhe Strong Equwatence Principle to < 4x10- 5
— time-rate-of-change of G: < 10:12 "'er\xear
— geodetic precession: to.< 0.6%
— 1/R force law: to < 10-1° times the strergh of gravity (at 108 m scales)

— gravitomagnetism (frame dragglrtg) to/<.0.1%

« APOLLO, through 1 mm ranglng,gwnh prove all of these limits by
approximately
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APOLLO: Achieving the 1 mm Goal

.+ APOLLO offers order-of-magnitude
improvements to LLR by:

— Using a 3.5 m telescope at a high
elevation site '

- — Using'a 16-element APD arfay
— -Operating at 20 Hz pulse rate
— Multiplexed timing capable of detecting

O bservatory 5 + .« multiple photons per shot
~ — Tight integration of experiment with
undar : analysis
e v — Having a*fund-grabbing acronym
ASCT—TANEZIE . . A&Q\is jointly funded by the NSF and
, ) by NASA
Jperation [ =g
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APOLLO I'nStr'u'rn‘ent'Ov'er\'/ié‘w |

-+ Laser:

_ 532 hm Nd: YAG, mode locked,
* cavity-dumped

— 90 ps pulse width
— 115 mJ per pulse

= 2rHz:
~ 2.3 W average power

in front recovers fill-

idgﬁyﬁ}(O.BS arcsec per

S permltsz.real-tlme tracklng
, IWLR16 Poznan ; 5



Laser on Telescope
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Sys‘te‘m‘_ in Actiqh '

For a complete description of instrument, **
see the article published in the Publications .
of the Astronomical Society of the Pacific

(PASP), volume 120, p. 20 (2008) .
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APOLLO Example Data

Apollo 15

2007 1148

Apollo 11

red curves are theoretlcwhm@hlﬂayggtmﬂ,«smwctmémefrdumal to make lunar return
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» 6624 photons in 5000 shots
« 369,840,578,287.4 + 0.8 mm

* 4 detections with 10 photons
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time offset (ns)

\\q- 2344 photons in 5000 shots
« 369,817,674,951.1 + 0.7 mm
* 1 detection with 8 photons
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Senéing Array Size and Orientation

2007.10.28 . 2007.10.29 w2007 11518 £ 2007.11.20
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APOLLO Return Rates

APOLLO max

'APOLLO max

APOLLO max

AROLLO max

Reflector photons/run photons/5-min photons/shot photons/shot

o : (5 min avg) (15 sec avg)
Apollo 11 4288 (25x) 3120 (38x) g5 1.0
Apollo 14 '5100 (24x) 5825 (44x) 0.97 1.4
Apollo 15 12524 (21x%) 19915 (35x) 1.65 2.8
Lunokhod 2 0.15 0.24

750 (11x)

—]

900 (31x)’

— Have seen 11 of 13 functlonlng APD elem”"f:;s register lunar photons in

a single shot
— see approximate 1:1:3 Apollo reflecto; ratilfa}unokhod is reduced

- Can operate at full moon (backgroun
weaker than expected (by 100x)

« Overall signal is still about 10x weaker than we expect
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(rélatlve 10 pre-APOLLO record)

« APOLLOQO’s best runs are solldly In the multlple photon/shot regime
— APD array is crucial for catchlng all the %fbns

X

iting ), but signal is far
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Siigelgle Apo‘ll_d 15 Run: Stripchart

I I

/ 11- photon return

many 10-photon returns

2008.10.14
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Hits Per Shot

Stripchart based on
300-shot (15 sec)
running average
rate (blue curve),
represented in
photons per shot
(left axis).

indicate
photon count (within
1 ns of lunar center)
for each shot (

)

One shot delivered
11 photons, many
delivered 10, and
SO on.




Catching All the Photons?

Lunar Returns Fiducial Returns

...« Returns R ...« Returns
.-.- Binomial AN -«-- Binomial

Poisson pyan Poisson
-««- Yield \ -+« Yield

mean = 1.26 7 1\ ‘:“\‘ mean = 1.08
81% mult. phot. [\ 164% mult. phot.
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The Lunar returns (blue; left) deviate substantlally;fs ‘ d ) (due to speckle)
The Fiducials are faithful to binomial (thus the lunare f}» is not a systematic issue)
But the trailing-off of lunars suggests we’re ca‘tchlhg (virtually) all the photons
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The Full Moon Hole

This log plot shows our Apollo

Apollo 15 LLR rates since 2007 Sept.

15 return rates as a function of
lunar phase angle, D. Within 15°
of full moon (D=180°), we see a
10% : hundred-fold reduction in signal.
: 1 '
2 iin This is not due to background.
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Reaching the Millimeter Goal?

* 1 millimeter quality data is
frequently achieved
— especially since Sept. 2007

— represents combined
performance per reflector per
night (< 1 hour observing

- session)

\— random uncertainty only
o . :

= \irtually all nights deliver

median = 1.8 mm
1.1 mm recent

Number of Nights

Nightly Uncertainty (mm one-way)

shaded — recent results
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Residuals Within a Run

individual error bars: 6 = +1.5 mm

100 200 300
Time since first normal point (seconds)

IWLR 16, Poznan

. Breaking a 10,000-
- shot run into 5 chunks,

we can evaluate the

- stability of our
measurement

‘Comparison is against

imperfect prediction,
which can leave linear
drift

No scatter beyond that
expected statistically
— consistent behavior
for each run we've

evaluated in this
manner
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Residuals Run-to-Run

We can'get 1 mm
range precision in
single “runs” (<10-
Apollo 15 reflector o minutes)
2008.02.18 "

1.16 mm .
2269 photons; 3k shots.-

=" 1.73 mm ‘The scatter about a
901 photons; 2k shots linear fit is small:
consistent with
estimated random
error (also true for all
e nights studied this

0.66 mm way)

8457 photons; 10k shots
1.45 mm 0.5 mm effective
1483 photons; 3k shots data point for Apollo

15 reflector on this
10 15 20 25 30

Time since first normal point (minutes) mght
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JPL Model Residuals
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APOLLO data points
processed together
with 16,000 ranges
over 38 years shows
consistency with
model orbit

Fit is not yet perfect,
but this is expected
when the model sees
high-quality data for
the first time, and
APOLLO data
reduction is still
evolving as well

Weighted RMS is
about 8 mm

x = 3 for this fit
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Data points—individual “runs”; alternating shades—w
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- APOLLO Impact on ‘I'\/Iod‘

el

If APOLI._O data is
down-weighted to
, we see what

the model would do
without APOLLO-

quality data

Answer: large (40 mm)
adjustments to lunar

. orientation—as seen

via reflector offsets
(e.g., arrowed
sessions)

May lead to improved
understanding of lunar
interior, but also
sharpens the picture
for elucidating grav.
physics phenomena
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Current Status and Future Plans

« APOLLO is now beginning its thlrd year of steady science
campaign | . :
— our very best month was 2008 September, so still improving

— Wwe expect science results will be possible soon, awaltlng model
developments . :

— working on data reduction 'sub-tlet“les (first photon bias, 16-element
detector array) o
« Part of the APOLLO goal is to mare tlghtly lntegrate

experimental and anaIyS|s efforts ~ae
— this has been surprisingly difficult \\
— asymmetric expectations (data vs. ana‘”“' results)

— starting'to work with Reasenberg/ShaplrnghandIer at Harvard/CfA
to update the Planetary EphemerlsﬁPro ragm (PEP) to become an
OPEN SOURCE cutting-edge anal 'ss [ )l for.L.L R .and solar
system analyses N

— contact me if mterested in contrlbutlng‘ -
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