The comparison of the station coordinates between SLR and GPS

Stanisław Schillak, Marek Lehmann

Space Research Centre of the Polish Academy of Sciences
Astrogeodetic Observatory
Borowiec, ul. Drapalka 4
62-035 Kornik, POLAND

e-mail: sch@cbk.poznan.pl
SLR data from 1 January 1993 to 31 December 2003 (Eurolas Data Center)

main models and parameters:
- Earth gravity field: EIGEN GRACE02S 20x20
- Earth and ocean tide model: EGM96
- polar motion: IERS C04
- arc length: 1 month
- satellites: LAGEOS-1 and LAGEOS-2
- 15 reference stations in ITRF2005 for orbit determination

estimated parameters:
- satellite state vector
- station geocentric coordinates
- acceleration parameters along-track, cross-track and radial at 5 days intervals
GPS data

 Thank you Dr. Michael HeFlin for results and explanation

- The ITRF2005 reference frame was realized each day through application of a 7-parameters Helmert transformation

- Transformation to epoch 2000.0 by JPL NASA station velocities

- Corrections to SLR reference point through local ties used in ITRF2005

- Data for epoch of the first day of each month
List of the SLR-GPS stations in 1993.0-2004.0

<table>
<thead>
<tr>
<th>STATION</th>
<th>SLR</th>
<th>GPS</th>
<th>NUMBER OF COMMON POINTS</th>
<th>PERIOD (months)</th>
<th>POSITION STABILITY [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SLR</td>
</tr>
<tr>
<td>McDonald</td>
<td>7080</td>
<td>MDO1</td>
<td>111</td>
<td>125</td>
<td>8.4</td>
</tr>
<tr>
<td>Yarragadee</td>
<td>7090</td>
<td>YAR1</td>
<td>109</td>
<td>131</td>
<td>8.4</td>
</tr>
<tr>
<td>Monument Peak</td>
<td>7110</td>
<td>MONP</td>
<td>76</td>
<td>109</td>
<td>7.6</td>
</tr>
<tr>
<td>Beijing</td>
<td>7249</td>
<td>BJFS</td>
<td>34</td>
<td>45</td>
<td>31.6</td>
</tr>
<tr>
<td>Arequipa</td>
<td>7403</td>
<td>AREQ</td>
<td>70/56</td>
<td>117</td>
<td>10.0</td>
</tr>
<tr>
<td>Borowiec</td>
<td>7811</td>
<td>BOR1</td>
<td>96</td>
<td>111</td>
<td>17.0</td>
</tr>
<tr>
<td>Grasse SLR</td>
<td>7835</td>
<td>GRAS</td>
<td>68</td>
<td>94</td>
<td>10.5</td>
</tr>
<tr>
<td>Potsdam</td>
<td>7836</td>
<td>POTS</td>
<td>96</td>
<td>110</td>
<td>8.4</td>
</tr>
<tr>
<td>Shanghai</td>
<td>7837</td>
<td>SHAO</td>
<td>67</td>
<td>99</td>
<td>21.5</td>
</tr>
<tr>
<td>Graz</td>
<td>7839</td>
<td>GRAZ</td>
<td>116</td>
<td>132</td>
<td>11.7</td>
</tr>
<tr>
<td>Herstmonceux</td>
<td>7840</td>
<td>HERS</td>
<td>102</td>
<td>130</td>
<td>6.8</td>
</tr>
<tr>
<td>Wettzell</td>
<td>8834</td>
<td>WTZR</td>
<td>79</td>
<td>94</td>
<td>9.4</td>
</tr>
</tbody>
</table>
CONCLUSIONS

horizontal components - good agreement of station positions for GPS and SLR

vertical component - too large differences for several stations, up to 3 cm

stability of GPS positions are significantly better than SLR positions

several the best SLR stations are little better than GPS

differences between GPS and SLR velocities are on the level 1 mm (also ITRF2005), we don’t observe any systematical shift between both techniques

station velocities are in good agreement with tectonic plate model NNR-NUVEL1A, with exception Chinese stations and Arequipa

future task: what to do for elimination of 2-3 cm differences between SLR and GPS in vertical positions?
The authors wishes to thank

Dr. Michael Heflin and JPL NASA for GPS Time Series
NASA GSFC for consent to use GEODYN-II program
ILRS and IGS stations for their continuous efforts to provide
high-quality SLR and GPS data.

This work has been supported by financial resources for
science in 2006-2009 as a research project No. 4T12E 007 30