Graz kHz SLR Station

Measuring Atmospheric Seeing with kHz SLR

Georg Kirchner, Daniel Kucharski, Franz Koidl, Jörg Weingrill

Canberra, Oct. 2006
Beam Pointing: Not always stable ...

- Laser Beam, night time
- Backscatter, seen by ISIT
- 25 Frames per second
- Pointing is NOT stable
- Pointing Jitter: up to 50 µrad
- Frequency of this wobbling:
 Few Hz up to few 10 Hz
Possible Reason: Laser Beam Pointing?

- We installed a **Laser Beam Monitor** at the laser box beam exit:
 - A mirror reflects a small portion (<< 1%) of the laser on a CCD chip;
 - CCD Image: Monitored by a PC, with up to 30 fps;
 - Center Coordinates of Beam (X / Y) calculated, and stored.
Possible Reason: Laser Beam Pointing ?

- Only few µrad (<<1") wobble (mainly measurement accuracy);
- Even THAT is DEcreased by following beam expander;
- Bigger DRAFT only at switch-on / warm-up (not shown here)

Conclusion: Wobble is NOT caused by Laser Beam Pointing Instability ...

![Beam Monitor: Laser Beam Pointing Stability](chart)

- X-Coord
- Y-Coord

<table>
<thead>
<tr>
<th>X [µrad]</th>
<th>115</th>
<th>117</th>
<th>119</th>
<th>121</th>
<th>123</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y [µrad]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Seconds of Day; 600 seconds plotted
Other possible reason: Atmosphere ...

- Beam Wobble caused by atmospheric micro-turbulences
 => Atmospheric „Seeing“:
- Expected Amplitudes: Some Arcseconds
 - Laser Beam Wobble: Up to 50 µrad (= 10“)
 - Expected Frequencies: From few Hz up to few 10 Hz
 - Can be more than 100 Hz, but at decreasing amplitudes ...
 - Laser Beam Wobble: Up to 10 or 15 Hz visible at ISIT images
Seeing Effects for SLR ???

- Graz Beam Divergence (< 10") and Seeing (∼ 2" – 7"):
 - Both with Similar Magnitudes ...
 - Seeing for SLR can be WORSE than Astronomical Seeing:
 => Fast moving telescope, faster changing atmospheric conditions

- Degrades laser pointing accuracy
- May reduce return rates;
- No problem for LEOs, but may have effects for GPS etc.
What worsens „Seeing“?

Seeing Values are influenced by:

- Actual atmosphere: Wind; layers, gradients etc.
- Elevation of Satellite: Seeing is worse at lower elevation
- Temperature differences: Seeing is worse in winter time:
 - Graz Observatory rooms are heated; but isolation is almost ZERO
 - This causes lot of turbulences around station in WINTER time …

- Motion of telescope: Seeing is worse at higher speeds !!!
Measuring Seeing: Standard Method

- Hartmann – Shack: 2 Holes at the entrance pupil;
- Observing Polar Star: Gives 2 spots on the CCD sensor;
- Variation of spot distances gives Seeing Value

Seeing = 3.57 arcsec

Canberra, Oct. 2006
Our „Best“ Seeing ever measured: Below 3” during 3 hours
Deriving Seeing Values from kHz

- Laser Beam Backscatter is monitored by ISIT; frames into PC
- Real Time Image Processing: Determine Peak of Laser Beam;
- Coordinates of Peak determine Seeing Area;
- FWHM of this area => Astr. Seeing (arc secs);
- Compare with Hartmann – Shack Results

Canberra, Oct. 2006
Seeing Values derived from kHz Laser

Seeing / Fixed Pointing

Seconds of Day

Seeing [arc secs]
Seeing Values Derived from kHz Laser

Day 2006/037: Seeing vs. Elevation

Ajisai / Day 037/2006: Seeing changes with elevation

Canberra, Oct. 2006
Seeing Values Derived from kHz Laser

Lageos1 322 03: 43° EL

- Elevation [°]
- Seeing [arc secs]
- Speed [0.01°/s]

Graph showing the variation of elevation, seeing, and speed over time (sec of day).
Seeing Values Derived from kHz Laser

- Envisat: Day 033
- < 30° Elevation

- At 90° Azimuth:
 => Obs. Roof !!!
- Heating Influence

Canberra, Oct. 2006
Conclusions:

- It is possible to derive Seeing Values from a kHz Laser Beam;
- Seeing Influence is BIG enough to spoil Laser Beam Pointing;
- This might reduce Return Rate from High Orbiting Sats;
- Biggest Influence in Graz: Heating of Observatory
 - We have to live with it – or freeze to death 😊

- Plans to reduce effect with a Fast Steering Mirror, controlled by Seeing Offsets derived from kHz Beam (10" max, 40 Hz max);

Thank You 😊

Canberra, Oct. 2006