EOS Software Systems

for

Satellite Laser Ranging and General Astronomical Observatory Applications

ILRS Conference, Canberra 2006
Observatory Control System

- Control telescopes, enclosures, lasers and many other devices
- Provide an ‘Observatory’ abstraction
- Automate observatory operations
The Software Challenge

- Previous Observatory Control Systems were not scalable:
 - Monolithic
 - Highly-Coupled
 - Inflexible
 - Domain and Problem-Specific
 - Hard to Maintain
The Software Solution

• These pressures inspired a modern ‘Observatory Control System’:

✓ Modular
✓ Loosely-Coupled
✓ Flexible
✓ Maintainable
✓ Domain and Problem-Independent
Basic Architecture

• Observatory = Hardware & Software + Network + Control System Software + Observatory Software

• Control System Software = Servers + Clients + Interfaces & Frameworks
Basic Architecture
Hardware & Software

- Hardware and Software are fundamental building blocks

- Problem – often heterogeneous
 - platforms, e.g. PC, Mac
 - operating systems, e.g. Windows NT, XP, Linux
 - interfaces, e.g. serial, CANopen, USB, Bluetooth
 - protocols, e.g. sockets, CORBA, COM

- Hardware and Software ‘Devices’
 - Devices abstract specifics
 - all Devices have the same ‘look’, ‘feel’, behaviour
Network

• Usually can’t run an Observatory on one computer
 • limited capacity, eg. CPU, memory, expansion slots

• Multiple computers -> Network -> Network-enabled Observatory Control System

• Devices communicate over Network using common, abstract Network Interface
 • provide universal communications abstraction
Control System Software - Client / Server

- **Client applications**
 - connect to Servers over Network / Internet
 - use Devices via Server applications
 - common Network Interface

- **Server applications**
 - abstraction of Devices
 - provide services to Client applications
 - common Network Interface
Observatory Software

- Software to meet general observatory requirements
- Software to meet specific customer requirements
- Built using Observatory Control System Frameworks
Servers

- Manage hardware and software Devices
- Cooperate to perform observatory tasks
- Building Blocks
 - hierarchical
 - separation of concerns
 - complex systems, simple components
Clients

- Connect to Servers anywhere on Network
- Send commands, receive replies
- Subscribe / Publish
- Asynchronous
 - ✓ no polling
 - ✓ more-efficient
 - ✓ less code
Interfaces & Frameworks

- All software supports common Network Interface and built using common Frameworks
 - Client framework
 - Server framework
- Advantages:
 - ✓ hide complexity
 - ✓ facilitate re-use
 - ✓ extend systems
- Available to customers to extend their systems independent of EOS
Automation

- Control System Automation
 - System Management
 - Device Management
 - Resource Management

- Observatory Automation
 - Task Scripting
 - Task Scheduling
 - Open Loop Control
 - Closed Loop Control
Case Study – Mt. Stromlo

- Mt. Stromlo facility built using Observatory Control System

- Station supports two ranging systems:
 - SLR
 - Debris

- Two Systems:
 - different requirements
 - some shared components
 - same Observatory Control System
 - no problems
Conclusion / Plans for the Future

- Network of Stations
 - a Station is a Network of Devices; next a Network of Stations
 - enable cooperative, over-the-horizon and global observing and ranging programmes

- Observatory Control System without EOS telescopes and enclosures

- Non-observatory control systems