Time-Variable Gravity from SLR and DORIS Tracking

F.G. Lemoine¹, S.M. Klosko², C.M. Cox³, T.J. Johnson⁴

(1) Planetary Geodynamics Laboratory, Solar System Exploration Division
 NASA Goddard Space Flight Center, Code 698, Greenbelt, Maryland 20771, USA
(2) SGT Inc., Greenbelt, Maryland 20770, USA
(3) Raytheon Integrated Defense Systems, Arlington, Virginia 22202, USA
(4) US Naval Observatory, Washington, DC 20392, USA

15th International Laser Ranging Workshop
Canberra, Australia
October 15-20, 2006
Introduction

- GRACE is providing a valuable new source of high resolution gravity data for assessment of surface mass transport
- Intercomparison of this new technology with SLR/DORIS based results can accomplish several objectives:
 - Validation of GRACE, where the performance of the SLR/DORIS tracking allows
 - Improvement of the SLR/DORIS processing via new models, processing algorithms, and independent quality assurance
 - Thereby leveraging GRACE into the pre-GRACE era
- The final objective being to provide valid and useful geoid change and surface mass transport over the past ~25 years for geophysical analysis
- This is only possible because of the tracking services and missions
New SLR Processing

- Data from Lageos-1/2, Starlette, Stella, Westpac, Ajisai, GFZ-1, TOPEX/Poseidon, and BE-C

- All SLR/DORIS data reprocessed using:
 - ITRF2000 Reference frame + corrections
 - GGM01C GRACE gravity model
 - IERS2003 Solid Earth Tides, including anelasticity
 - GOT00.2 Ocean Tides
 - Self-Consistent equilibrium long period tides, including 18.6-yr ocean tide
 - NCEP-derived atmospheric gravity variations wrt 2000-2001 mean modeled
 - Monthly, 20x20 correction
 - IB assumed for Ocean
 - Observed annual gravity terms to $N_{max} = 4$ forward modeled

- Time Variable Gravity Solution(s):
 - 30x30 Static, 6x6 Rate + Annual and 4x4 Semi-Annual
 - 4x4 monthly series
Satellite Tracking Temporal Coverage

The chart illustrates the temporal coverage of various satellites from 1976 to 2006. The satellites listed are:

- Lageos-1
- Starlette
- BE-C
- Ajisai
- Lageos-2
- T/P SLR/DORIS
- Stella
- GFZ-1
- Westpac

Each bar represents the duration of coverage for each satellite.
C$_{2,0}$ Time Series
C$_{2,0}$ Time Series: What happened to the 1998 anomaly?

1998 C$_{2,0}$ Anomaly is a jump, not a slope reversal

Shown with 1980-1997 slope removed (1.34 x 10$^{-11}$ per year)
Post 1997 slope nearly identical (1.36 x 10$^{-11}$ per year)
$C_{2,0}$ Time Series

Color range: +/- 2 mm Geoid change for 1×10^{-10} change in value

\[\overline{C}_{2,0} = -\frac{J_2}{\sqrt{5}} \]
$C_{2,0}$ Comparison: SLR vs GRACE monthly

Formal Errors shown for SLR Calibrated Errors shown for GRACE
C_{2,1}: SLR vs GRACE monthly

Formal Errors shown for SLR Calibrated Errors shown for GRACE
S$_{2,1}$: SLR vs GRACE monthly

- Formal Errors shown for SLR
- Calibrated Errors shown for GRACE
$C_{2,2}$: SLR vs GRACE monthly

Formal Errors shown for SLR Calibrated Errors shown for GRACE
S$_{2,2}$: SLR vs GRACE monthly

Formal Errors shown for SLR
Calibrated Errors shown for GRACE
$C_{3,0}$: SLR vs GRACE monthly

Formal Errors shown for SLR Calibrated Errors shown for GRACE
$C_{4,0}$: SLR vs GRACE monthly

Formal Errors shown for SLR Calibrated Errors shown for GRACE
Annual and Semi-Annual Variation (mov)

SLR/DORIS Derived using 1979-1997
Inverted Barometer used for Ocean
$N_{max}=6$ Annual, $N_{max}=4$ Semi

Resolution: ~3300 km

SLR/DORIS Derived using 1998-2005
Inverted Barometer used for Ocean
$N_{max}=6$ Annual, $N_{max}=4$ Semi
Annual and Semi-Annual Variation (mov)

SLR/DORIS Derived using 2001-2005
Inverted Barometer used for Ocean
$N_{max}=6$ Annual, $N_{max}=4$ Semi

Resolution: ~3300 km

Power in GRACE comparable to pre 1998 SLR

GRACE (UT/CSR) Derived using 2002-2004
Includes wind and pressure driven ocean
SLR/DORIS $C_{2,0}$ terms used, $N_{max}=6$
Annual Signal Strength and Uncertainty

SLR/DORIS Gravity Field Annual Signal
RMS Spectra

Value (normalized)
7.0E-11
6.0E-11
5.0E-11
4.0E-11
3.0E-11
2.0E-11
1.0E-11
0.0E+00

Harmonic Degree
1
2
3
4
5
6
7

Signal
Uncertainties
GRACE
SLR Observed Geoid Rates Through Degree 6

Period: 1979-2004
SLR Observed Geoid Rates: 1979-1997

SLR/DORIS observed rates

Error = 0.14 mm/yr

Post-Glacial Rebound model coefficients courtesy Erik Ivins of JPL

Lower Mantle Viscosity: 1.5x10^{-21} PaS

15x10^{-21} PaS

100x10^{-21} PaS
Variability in the Observed Geoid Rates

Global Uncertainty: ~0.16 mm/yr

Period: 1996-2001

Period: 1999-2004

Nmax = 6

Note increase in amplitude and Asian High
GRACE Geoid Rates, 2002-2004

Based on fits of mean, rate, annual, and semi-annual terms to coefficients of UT/CSR Level-2 gravity field products, $N_{max} = 6$.

With Level-2 C2,0 Rate

Using SLR/DORIS C2,0 Rate for 1999-2004
Despite the difference between the five and two year periods for the solutions SLR/DORIS and GRACE are seeing essentially the low/mid latitude signal
Conclusions

- 1998 $C_{2,0}$ anomaly appears to be a jump, or other interannual variation, not a long term state change
- Current GRACE $C_{2,0}$ does not agree with the SLR estimates
 - Otherwise GRACE and SLR/DORIS in reasonable agreement at degree 2
 - Significant disagreement in other zonal terms
- Overall SLR/DORIS and GRACE annual structure agrees
- Calibrated GRACE error bars seem reasonable
- Long wavelength rate terms
 - SLR/DORIS has the precision and long history necessary to address the long term geoid rate problem
 - Yields statistically significant geoid rates rates up to $N_{max} = 6$ (~3300 km)
 - For the pre 1998 period the observed geoid rates are similar to Post Glacial Rebound predictions for the polar regions
 - Significant interannual variation is evident at time scales of 5-6 years
 - GRACE rate information shows larger geoid rates over a span of two years
 - Some similarities with SLR solution spanning the period
Future work

- Recompute time series using updated forward models.
- Add new satellites to time series:
 - Jason-2 (SLR/DORIS corrected for SAA);
 - Geosat (Doppler/Xover);
 - GFO (Doppler/Xover)
 - Etalons
 - DORIS Data