SLR Contribution to the ITRF

- Review of the SLR Contribution to the ITRF
- TRF Implementation: Theoretical Aspects
- Reality of the Current SLR Network
- Reality of the Current Collocation Sites
- Some Analysis of the ILRS Pilot Project Solutions
- Conclusion

Zuheir Altamimi
Institut Géographique National, FRANCE

http://lareg.ensg.ign.fr/ITRF/
SLR Contribution to ITRF

- Origin: Center of Mass
- Scale: Together with VLBI
- Unconstrained Solutions for ITRF2000
ITRF2000: Translation Variations (mm)
ITRF2000: Translation Variations (mm)

Altamimi
ITRF2000: Scale Variations (ppb = 10^{-9})

(1 ppb \approx 6 mm shift in station heights)
TRS & TRF in Space Geodesy

TRS: Mathematical model of the physical world:
No physical existence
Observations provide ”Network Shape”

- **TRF & Space Geodesy techniques:**
 - **Origin**: Dynamical techniques provide the CoM
 - **Scale**: Same for all techniques ?
 - **Orientation**: Unobservable by any technique

- Specific constraints are needed to complete the TRF datum definition, leaving the shape undistorted

- **Rank Deficiency** in terms of Normal Equation System

- Separate the variance (noise) of the observations (having a stochastic character) & the (deterministic) frame parameters: **Use of minimum constraints**
Datum Definition: ITRF combination

\[X_2 = X_1 + T + DX_1 + R.X_1 \] \hspace{1cm} (1)

Assuming constant velocities and differentiating Eq. (1) w.r.t time:

\[\dot{X}_2 = \dot{X}_1 + \dot{T} + D\dot{X}_1 + \dot{DX}_1 + R\dot{X}_1 + \dot{R}.X_1 \] \hspace{1cm} (2)

\[
\dot{T} = \begin{pmatrix}
\dot{T}_1 \\
\dot{T}_2 \\
\dot{T}_3
\end{pmatrix}
\]
\[
\dot{R} = \begin{pmatrix}
0 & -\dot{R}_3 & \dot{R}_2 \\
\dot{R}_3 & 0 & -\dot{R}_1 \\
-\dot{R}_2 & \dot{R}_1 & 0
\end{pmatrix}
\]

=> 14 degrees of freedom to define a TRF.
Datum Definition / Minimum Constraints (1/4)

Application of Minimum Constraints (MC) approach based on theoretical works by many authors, since the 70’s on, e.g.:

- Free Network Adjustment
- S-transformation
- Minimum/Inner Constraints

Main Goal: The ”best” TRF datum definition preserving both the actual quality of space geodesy observations and the ”Network Shape”
Datum Definition / Minimum Constraints (2/4)

The starting point is the standard relation between two TRF’s:

\[X_2 = X_1 + A\theta \] \hspace{1cm} (3)

\[\theta = (T_1, T_2, T_3, D, R_1, R_2, R_3, \dot{T}_1, \dot{T}_2, \dot{T}_3, \dot{D}, \dot{R}_1, \dot{R}_2, \dot{R}_3)^T \]

\[A = \begin{pmatrix}
\dot{x}_i & 0 & \dot{z}_i & -\dot{y}_i & 1 & 0 & 0 & \dot{x}_i & 0 & \dot{z}_i & -\dot{y}_i & \approx 0 \\
0 & 1 & 0 & -\dot{z}_i & 0 & \dot{x}_i & 0 & \approx 0 \\
0 & 0 & 1 & \dot{y}_i & -\dot{x}_i & 0 & 0 & \approx 0 \\
0 & 0 & 1 & \dot{z}_i & \dot{y}_i & -\dot{x}_i & 0 & \approx 0 \\
\end{pmatrix} \]
Datum Definition / Minimum Constraints (3/4)

\[\theta = (A^T A)^{-1} A^T (X_2 - X_1) \]

L.S. of eq. (3) yields:

Using \(B = (A^T A)^{-1} A^T \), containing all the necessary info. to define a TRF, a ”datum definition” equation at \(\Sigma_\theta \) level could be written as:

\[B(X_2 - X_1) = 0 \] \((\Sigma_\theta) \) \((4) \)

and in terms of normal equation:

\[B^T \Sigma^{-1}_\theta B(X_2 - X_1) = 0 \]
The initial NEQ system of space geodesy observations could be written as:

\[N_{unc}(\Delta X) = K \] (5)

where \(\Delta X = X - X_{apr} \) (Linearized Unknowns)

Selecting a Reference TRF \((X_R)\), MC equation is:

\[B^T \Sigma_\theta^{-1} B(\Delta X) = B^T \Sigma_\theta^{-1} B(X_R - X_{apr}) \] (6)

Cumulating (5) and (6) yields:

\[(N_{unc} + B^T \Sigma_\theta^{-1} B)(\Delta X) = K + B^T \Sigma_\theta^{-1} B(X_R - X_{apr}) \]
TRF + EOP Simultaneous Combination

CATREF Software upgraded:

- inclusion of EOP’s
- implementation of minimum constraint equations

Some Analysis Tests follow using:

- **SLR**: ILRS Pilot Project Monthly Solutions

- **GPS**: IGS weekly combined solutions

- **VLBI**: GSFC session sinex files

- **DORIS**: IGN monthly solutions

Focus on Origin, Scale, EOP consistency

\[
\begin{align*}
x_s^p &= x^p + R2_k \\
y_s^p &= y^p + R1_k \\
UT_s &= UT - \frac{1}{f} R3_k \\
\dot{x}_s^p &= \dot{x}^p + \dot{R}2_k \\
\dot{y}_s^p &= \dot{y}^p + \dot{R}1_k \\
LOD_s &= LOD + \frac{\Lambda_0}{f} \dot{R}3_k
\end{align*}
\]
ILRS Origin and Scale Consistency

Data: Monthly solutions over 1-3 years: A-type Solutions

Chart showing TX, TZ, TY, and Scale (mm) data for ASI, CSR, DGFI, and JCET from 1999 to 2001.
ILRS EOP Consistency: One year solutions (1999) X & Y Pole Residuals
ILRS EOP Consistency: One month solutions:
(APR 2001) X-Pole Residuals
ILRS EOP Consistency: One month solutions:
(APR 2001) Y-Pole Residuals

<table>
<thead>
<tr>
<th>asiB1v2 YPO</th>
<th>asiB2v2 YPO</th>
<th>asiB3v2 YPO</th>
<th>asiB4v2 YPO</th>
<th>ausB1v1 YPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ausB2v1 YPO</td>
<td>bkgB1v1 YPO</td>
<td>bkgB2v1 YPO</td>
<td>crlB1v2 YPO</td>
<td>crlB2v2 YPO</td>
</tr>
<tr>
<td>crlB3v2 YPO</td>
<td>crlB4v2 YPO</td>
<td>jceB3v3 YPO</td>
<td>jceB4v3 YPO</td>
<td>nerB4v3 YPO</td>
</tr>
</tbody>
</table>
ILRS EOP Consistency: One month solutions: X-Pole, Y-Pole Rates and LOD Residuals
Current SLR-VLBI Collocations

Current SLR-GPS Collocations

Current SLR-DORIS Collocations

Current VLBI-GPS Collocations

Current VLBI-DORIS Collocations

Current DORIS-GPS Collocations
One year multi-technique combination
X & Y_pole Residuals

ILRS XPO

IGS XPO

VLBI/GSFC XPO

DORIS/IGN XPO

ILRS YPO

IGS YPO

VLBI/GSFC YPO

DORIS/IGN YPO
One year multi-technique combination
X & Y_pole Rate & LOD Residuals
One Month multi-technique combination: X & Y pole Residuals
One Month multi-technique combination: X & Y pole Rate & LOD Residuals

Altamimi

WASHINGTON DC, OCTOBER 7, 2002
Conclusion

- ILRS TRF Origin and Scale:
 - Some small Tz and Scale differences exist between AC’s
 - More refinement is needed for the TRF origin and Scale maintenance?
 - SLR and VLBI current networks/collocations are very poor: Scale Comparaison?

- ILRS EOP:
 - Good estimates of X-pole, Y-pole and LOD
 - The rate estimates of X-pole & Y-pole degrade the overall results
 - Good agreement of X-pole, Y-pole and LOD with other techniques