The LHRS Diagnostic Software has been enhanced to translate the hex data stream and the hex values in LHRS Local Control chassis microprocessor memory locations into text. This permits easier real-time system status checks, and reduces the chance of misinterpretation of the system's status.

The LHRS Diagnostic Software has been enhanced to translate the hex data stream and the hex values in LHRS Local Control chassis microprocessor memory locations into text. This permits easier real-time system status checks, and reduces the chance of misinterpretation of the system's status.

If the Host System encoder synchronization signal is not present the LHRS will issue a transmit laser energy disable signal.

Processing Software Upgrade

A Radar Microprocessor Watchdog Timer was installed. This circuit ensures that the microprocessor is operational.

Mechanical Connection Verification between LHRS Local Control Chassis and the Host System Encoder has been instituted providing increased fault protection of LHRS. It insures that the LHRS is properly connected to the Host System.

The University designed system was operational by February 2002, and met or exceeded all original technical specifications. The final product could be used as designed by any positioning system that uses Inductosyn® transducers, or position

They include:

- Automated Laser Data Collection
- Automated Data Processing
- Automated Data Analysis
- Automated Data Reporting
- Automated Data Storage
- Automated Data Retrieval
- Automated Data Archiving
- Automated Data Backup
- Automated Data Security
- Automated Data Encryption
- Automated Data Compression
- Automated Data Transmission
- Automated Data Reception
- Automated Data Display
- Automated Data Viewing
- Automated Data Printing
- Automated Data Sharing
- Automated Data Distribution
- Automated Data Access
- Automated Data Retrieval
- Automated Data Storage
- Automated Data Archiving
- Automated Data Backup
- Automated Data Security
- Automated Data Encryption
- Automated Data Compression
- Automated Data Transmission
- Automated Data Reception
- Automated Data Display
- Automated Data Viewing
- Automated Data Printing
- Automated Data Sharing
- Automated Data Distribution
- Automated Data Access
- Automated Laser Data Collection
- Automated Laser Data Processing
- Automated Laser Data Analysis
- Automated Laser Data Reporting
- Automated Laser Data Storage
- Automated Laser Data Retrieval
- Automated Laser Data Archiving
- Automated Laser Data Backup
- Automated Laser Data Security
- Automated Laser Data Encryption
- Automated Laser Data Compression
- Automated Laser Data Transmission
- Automated Laser Data Reception
- Automated Laser Data Display
- Automated Laser Data Viewing
- Automated Laser Data Printing
- Automated Laser Data Sharing
- Automated Laser Data Distribution
- Automated Laser Data Access
- Automated Laser Data Collection
- Automated Laser Data Processing
- Automated Laser Data Analysis
- Automated Laser Data Reporting
- Automated Laser Data Storage
- Automated Laser Data Retrieval
- Automated Laser Data Archiving
- Automated Laser Data Backup
- Automated Laser Data Security
- Automated Laser Data Encryption
- Automated Laser Data Compression
- Automated Laser Data Transmission
- Automated Laser Data Reception
- Automated Laser Data Display
- Automated Laser Data Viewing
- Automated Laser Data Printing
- Automated Laser Data Sharing
- Automated Laser Data Distribution
- Automated Laser Data Access

Photonic PMT 318

Receiver Subsystem

- Signal Pre-Amplifier: 40 dB
- Power Supply: 5 VDC
- Data Interface: 128-bit parallel
- Laser Power: 100 mW
- Laser Wavelength: 440 nm
- Laser Diode: AlGaAs
- Laser Diode Current: 20 mA
- Laser Diode Voltage: 1.5 V
- Laser Diode Efficiency: 25%