Local Survey Relationships to System Calibration and Bias Identification

“Towards Millimeter Accuracy”

Paul Stevens, James Long, Nagendra Paudel

NASA SLR/VLBI Program

Honeywell Technology Solutions Inc.

Honeywell International

Lanham, MD 20706 USA

Motivation:

A limiting factor in the range bias of an externally calibrated SLR system is the accuracy of the surveyed distance and the stability of that distance. An error in the target distance will map 1:1 into a range bias. By periodic simultaneous ranging to multiple terrestrial targets, at different azimuths and ranges, system biases can be separated from target, system movement or survey errors. These simultaneous ground target tests are commonly referred to as MINICO (MINICO).

Local survey ties are necessary to monitor site stability between geodetic systems: geodetic markers; and terrestrial SLR calibration targets. Currently, state-of-the-art local survey ties are accurate to the 1 to 2 millimeter level using proper equipment, survey procedures, and data reduction techniques.

Maintaining accuracy of local survey ties can be a critical component towards reaching millimeter SLR data.

Ground Testing:

MINICO ground tests assist in the identification of any azimuth dependent bias and provide validation of site survey by calculating variations in system delays by laser ranging to multiple ground targets with differing azimuths and ranges. By maintaining data histories and performing trend analysis on bias’s between these multiple targets, potential target movements can be detected.

Analysis revealing bias between multiple ground targets above 5mm should require follow up survey activities to confirm stability of all pier measurements and identify the precise magnitude of any potential movement.

History of Recent Movements:

Ground targets movements at Greenbelt have occurred as a result of significant events to the geological composition in which calibration targets reside. Changes to the geological composition can often be tied to severe weather and climate conditions frequently found at SLR site locations.

In 1998 at the Goddard Geological Observatory (GGAO), following an extended period of summer drought conditions, Calibration Target “B” was found to moved 5.3mm in range relative to Station 7105 (Moblas–7) (Figure 1).

Once again in 2000, following the construction of a new, more stable calibration Target B, climate and geological conditions contributed to another significant movement of the target (Figure 1).

In both 1998 and 2000 at GGAO, laser ranging ground tests provided the initial diagnosis in the identification of pier instability. Formal re-survey’s confirmed the suspected movements (Figures: 3, 4, 5).

Ground targets to Station 7105 have occurred as a result of significant events to the geological composition in which calibration targets reside. Changes to the geological composition can often be tied to severe weather and climate conditions frequently found at SLR site locations.

In 1998 at the Goddard Geological Observatory (GGAO), following an extended period of summer drought conditions, Calibration Target “B” was found to moved 5.3mm in range relative to Station 7105 (Moblas–7) (Figure 1).

Once again in 2000, following the construction of a new, more stable calibration Target B, climate and geological conditions contributed to another significant movement of the target (Figure 1).

In both 1998 and 2000 at GGAO, laser ranging ground tests provided the initial diagnosis in the identification of pier instability. Formal re-survey’s confirmed the suspected movements (Figures: 3, 4, 5).

Ground targets movements at Greenbelt have occurred as a result of significant events to the geological composition in which calibration targets reside. Changes to the geological composition can often be tied to severe weather and climate conditions frequently found at SLR site locations.

In 1998 at the Goddard Geological Observatory (GGAO), following an extended period of summer drought conditions, Calibration Target “B” was found to moved 5.3mm in range relative to Station 7105 (Moblas–7) (Figure 1).

Once again in 2000, following the construction of a new, more stable calibration Target B, climate and geological conditions contributed to another significant movement of the target (Figure 1).

In both 1998 and 2000 at GGAO, laser ranging ground tests provided the initial diagnosis in the identification of pier instability. Formal re-survey’s confirmed the suspected movements (Figures: 3, 4, 5).

Ground targets movements at Greenbelt have occurred as a result of significant events to the geological composition in which calibration targets reside. Changes to the geological composition can often be tied to severe weather and climate conditions frequently found at SLR site locations.

In 1998 at the Goddard Geological Observatory (GGAO), following an extended period of summer drought conditions, Calibration Target “B” was found to moved 5.3mm in range relative to Station 7105 (Moblas–7) (Figure 1).

Once again in 2000, following the construction of a new, more stable calibration Target B, climate and geological conditions contributed to another significant movement of the target (Figure 1).

In both 1998 and 2000 at GGAO, laser ranging ground tests provided the initial diagnosis in the identification of pier instability. Formal re-survey’s confirmed the suspected movements (Figures: 3, 4, 5).

Ground targets movements at Greenbelt have occurred as a result of significant events to the geological composition in which calibration targets reside. Changes to the geological composition can often be tied to severe weather and climate conditions frequently found at SLR site locations.

In 1998 at the Goddard Geological Observatory (GGAO), following an extended period of summer drought conditions, Calibration Target “B” was found to moved 5.3mm in range relative to Station 7105 (Moblas–7) (Figure 1).

Once again in 2000, following the construction of a new, more stable calibration Target B, climate and geological conditions contributed to another significant movement of the target (Figure 1).

In both 1998 and 2000 at GGAO, laser ranging ground tests provided the initial diagnosis in the identification of pier instability. Formal re-survey’s confirmed the suspected movements (Figures: 3, 4, 5).

Ground targets movements at Greenbelt have occurred as a result of significant events to the geological composition in which calibration targets reside. Changes to the geological composition can often be tied to severe weather and climate conditions frequently found at SLR site locations.

In 1998 at the Goddard Geological Observatory (GGAO), following an extended period of summer drought conditions, Calibration Target “B” was found to moved 5.3mm in range relative to Station 7105 (Moblas–7) (Figure 1).

Once again in 2000, following the construction of a new, more stable calibration Target B, climate and geological conditions contributed to another significant movement of the target (Figure 1).

In both 1998 and 2000 at GGAO, laser ranging ground tests provided the initial diagnosis in the identification of pier instability. Formal re-survey’s confirmed the suspected movements (Figures: 3, 4, 5).

Ground targets movements at Greenbelt have occurred as a result of significant events to the geological composition in which calibration targets reside. Changes to the geological composition can often be tied to severe weather and climate conditions frequently found at SLR site locations.

In 1998 at the Goddard Geological Observatory (GGAO), following an extended period of summer drought conditions, Calibration Target “B” was found to moved 5.3mm in range relative to Station 7105 (Moblas–7) (Figure 1).

Once again in 2000, following the construction of a new, more stable calibration Target B, climate and geological conditions contributed to another significant movement of the target (Figure 1).

In both 1998 and 2000 at GGAO, laser ranging ground tests provided the initial diagnosis in the identification of pier instability. Formal re-survey’s confirmed the suspected movements (Figures: 3, 4, 5).

Ground targets movements at Greenbelt have occurred as a result of significant events to the geological composition in which calibration targets reside. Changes to the geological composition can often be tied to severe weather and climate conditions frequently found at SLR site locations.

In 1998 at the Goddard Geological Observatory (GGAO), following an extended period of summer drought conditions, Calibration Target “B” was found to moved 5.3mm in range relative to Station 7105 (Moblas–7) (Figure 1).

Once again in 2000, following the construction of a new, more stable calibration Target B, climate and geological conditions contributed to another significant movement of the target (Figure 1).

In both 1998 and 2000 at GGAO, laser ranging ground tests provided the initial diagnosis in the identification of pier instability. Formal re-survey’s confirmed the suspected movements (Figures: 3, 4, 5).

Ground targets movements at Greenbelt have occurred as a result of significant events to the geological composition in which calibration targets reside. Changes to the geological composition can often be tied to severe weather and climate conditions frequently found at SLR site locations.

In 1998 at the Goddard Geological Observatory (GGAO), following an extended period of summer drought conditions, Calibration Target “B” was found to moved 5.3mm in range relative to Station 7105 (Moblas–7) (Figure 1).

Once again in 2000, following the construction of a new, more stable calibration Target B, climate and geological conditions contributed to another significant movement of the target (Figure 1).

In both 1998 and 2000 at GGAO, laser ranging ground tests provided the initial diagnosis in the identification of pier instability. Formal re-survey’s confirmed the suspected movements (Figures: 3, 4, 5).