Selection of SLR2000 Acquisition Parameters*

Dr. Paul J. Titterton
EOO, Inc.
269 North Mathilda Avenue
Sunnyvale, Ca 94086, USA
(408) 738-5390; FAX: (408) 738-5399
ptitterton@eooinc.com

Introduction and Summary
The SLR2000 autonomous and eyesafe satellite laser ranging system will acquire satellite targets at low elevation angles by correlation-aided detection of the time-of-arrival of a number of returned pulses. There is an optimum combination of the correlation parameter k (minimum number of pulse arrival times that must be correlated to declare a successful acquisition) and the frame time TF (minimum time required to accumulate these correlations). This combination depends upon known quantities (e.g. the system hardware performance) and estimated ones (e.g. the two-way atmospheric path transmission).

In this paper we develop an analytic method to select values of k and TF which simultaneously provide a high probability of detection (> 90%), and a low probability of false acquisition (< 1%), while allowing for significant uncertainty in the estimated quantities (~ ±25 %) such as the path transmission.

Acquisition with SLR2000
There are three areas of uncertainty during acquisition: the precise pointing angle to the target, the range / range rate of the target, and the expected signal amplitude.

Because of the expected system pointing errors, the initial angular uncertainty is ~ ± 80 µradians, while the beam size is constrained to ± 20 µradians to provide an adequate signal level. The NASA Goddard solution has been to implement a step spiral scan, centered on the most probable of the approximately ~ 17 locations. One dwells on each angular location only long enough to reliably acquire (> 90% probability), and to preclude false acquisition (< 1% probability per dwell time) --- this is a desired operating point. The first key parameter that arises in this approach is the dwell time per spot, also called the Frame Time, TF.

Time-of-flight uncertainties arise since the target's range and range rate are imprecisely known, with the degree of uncertainty being dependent on both satellite altitude and zenith angle. The solution has been to implement a range gate (~ 200 nsec), and partition this range gate into time bins (~ 500 psec). These bin widths are adequate to compensate for both system timing and range rate uncertainty effects, i.e. over a given frame time all the signal pulse arrival times will cluster within one bin over the range gates included in the Frame, as shown in Figure 1. This is the basis for acquisition by correlation detection acquisition. The correlation parameter, k, describes this process: detect k pulses within the same time bin of the range gate, after viewing N_{RG} Range Gates, where N_{RG} = PRF x TF, for PRF = the transmitter pulse repetition frequency.

* Supported in part by AlliedSignal Technical Services Corporation, and NASA Goddard Space Flight Center
The signal amplitude is uncertain because the two-way path transmission can only be inferred from day/night background, meteorology, and experience. k and T_F are dependent on the signal amplitude as well as the noise count rate, as seen below.

The challenge is to choose "best" values for k and T_F when initiating acquisition. The answer to this challenge forms the remainder of this paper. We start with the dependencies of the measures of performance (acquisition and false detection probabilities) on the system and correlation parameters.

As previously derived (cf. the EOO-authored documents in the Bibliography), the Probability of False Acquisition per Frame is given by

$$P_{False Acq} = 1 - e^{-\bar{m} \sum_{j=0}^{k-1} \left(\frac{\bar{m}}{j!} \right)^{n_{bin}}} = 1 - e^{\sum_{j=0}^{k-1} \left(\bar{m} \ln \left(\frac{\bar{m}}{j!} \right) \right)}$$

(1)

where $n_{bin} = \text{number of time bins within a single time gate}$;

$k = \text{correlation parameter, the number of range gates over a frame which must have the same bin with a count in order to declare acquisition}$;

$\bar{m} = \text{mean noise counts per bin over the frame}$

$$= \hat{n}_{pe} t_{bin} (PRF T_F);$$

(2)

for $\hat{n}_{pe} = \text{total noise count rate (sec)}^{-1}$,

$t_{bin} = \text{bin width (sec)}$.

For SLR2000, during the minimum bin width = 500 psec, and the PRF = 2000 Hz, so

$$\bar{m} = 10^{-6} \hat{n}_{pe} T_F .$$

(3)

From the same references, the probability of signal detection per frame is

$$P_D = 1 - e^{-N_t \sum_{j=0}^{k-1} \left(\frac{N_t^{\hat{j}}}{j!} \right)}$$

(4)

where $N_t = \text{The total mean number of correlated pe's detected in the same bin}$.

During the stressing SLR2000 acquisition function,
\[N_T \sim N_{pe}^s \]

(5)

for \(N_{pe}^s \) = total number of signal pe's detected during the frame,

and \(N_{pe}^s = n_{pe}^s (PRF T_F) \),

(6)

where \(n_{pe}^s \) = mean signal pe count per pulse, or Range Gate interval.

\(n_{pe}^s \) is derived/estimated from the Range Equation, with the major dependencies:

\[n_{pe}^s = \text{System Hardware Properties} \{ \text{Range}^{-4} \} \{ \text{two-way path transmission} \}. \]

Since the two way path transmission is only indirectly estimated from other observables, the expected value of \(n_{pe}^s \) is also uncertain.

For acquisition with the SLR2000 (with the typical signal count rate of \(\sim 10 \) per second and \(m < 1 \), so that Equation 5 holds),

\[N_t = 2000 n_{pe}^s T_F. \]

(7)

Selecting Values of \(k \) and \(T_F \)

Conceptually the approach is to specify a large probability of detection and a small probability of false acquisition, and to then use the inverted probability equations, i.e. solve for the dependence of \(k \) and \(T_F \) on each other, as well as the two probabilities, the signal and the noise levels.

Heuristically, for the False Acquisition Probability,

\[P_{False Acq} = 1 - e^{-n_{bin} m - \ln m} \]

\[\Rightarrow k = f(P_{False Acq}, n_{bin}, \bar{m} (T_F)); \]

(8)

and for the Probability of Detection,

\[P_D = 1 - e^{-N_t} \sum_{j=0}^{k-1} \frac{(N_t)^j}{j!} \]

\[\Rightarrow k = f(P_D, N_t(T_F)). \]

(9)

Given the success of the above quasi-inversions, we can then choose combinations of \(k \) and \(T_F \) which satisfy both equations, assuring us that the operating point will satisfy both probability criteria.

Noise / False Acquisition Equation

Since the algebra involved precludes a direct inversion approach, we invert the equation by first evaluating it for a given value of the \(P_{False Acq} \), and then tabulating the resulting relation between \(k \) and \(\bar{m} \) for a given number of bins. We curve fit the \(k/\bar{m} \) relation, substitute Equation 3 into the "fit" equation, to obtain a \(k / T_F \) relation.

The expression for the False Acquisition Probability, Equation 1, is evaluated in Figure 2 for the 1\% value of the Probability, with \(\bar{m} \) as a function of the number of bins, and \(k \) as a parameter.
We see from the figure that m has a weak dependence on the number of bins, except for $n(\text{bins})$ less than ~400. However, the value of m that will provide the desired low probability of false acquisition increases by orders of magnitude as k is increased from $k = 2$ to $k = 6$.

Table 1 lists the k/m pairs in Figure 2 at the 400 bin line, for $k = 2, 3, 4, 5$ and 6. We then perform a curve fit for the values in this Table.

Table 1. Noise and correlation parameter relationship for a 1% False Acquisition Probability and 400 time bins per range gate.

<table>
<thead>
<tr>
<th>k</th>
<th>m (nbin = 400)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0075</td>
</tr>
<tr>
<td>3</td>
<td>0.0593</td>
</tr>
<tr>
<td>4</td>
<td>0.1694</td>
</tr>
<tr>
<td>5</td>
<td>0.3459</td>
</tr>
<tr>
<td>6</td>
<td>0.5702</td>
</tr>
</tbody>
</table>

The result of this curve fit is

$$k = 36.285 \bar{m}^3 - 40.682 \bar{m}^2 + 18.558 \bar{m} + 1.992 \quad (400 \text{ bins/1%}) \quad (10)$$

Substituting Equation 3 into Equation 10 we arrive an expression relating the correlation parameter, the frame time, and the noise count rate, for 400 bins.

$$k = 3.63 \left(10^{-17}\right) \left[\frac{n_{pe}}{T_F}\right] - 4.07 \left(10^{-11}\right) \left[\frac{n_{pe}}{T_F}\right]^2 + 1.86 \left(10^{-5}\right) \left[\frac{n_{pe}}{T_F}\right] + 1.992$$
Equation 11 (and the appropriate one for 200 bins) is plotted in Figure 3. We see from the figure that the required values of \(k/T_F \) are only weakly dependent on the number of bins, as expected, but that high noise counts and long frame times demand very high \(k \) values. Long frame times may be impractical because of the number of spots that have to be scanned in the SLR200 to cover the initial angular uncertainty.

Figure 3. Evaluation of the \(k/T_F \) relationship for a 1% \(P_{\text{FalseAcq}} \), for 400 and 200 bins per range gate, and 1% False Acquisition probability

Signal Detection

In Table 2 we evaluate the probability of correlated signal detection, Equation 4. The table lists the detection probabilities as a function of the \(k \) parameter and the total mean number of signal photo-electrons detected per frame.
Table 2. Probability of Detection for the mean numbers of signal pe detected per frame and the correlation parameter k.

<table>
<thead>
<tr>
<th>Mean # of Signal pe's detected per Frame</th>
<th>$P_k(\geq 2)$</th>
<th>$P_k(\geq 3)$</th>
<th>$P_k(\geq 4)$</th>
<th>$P_k(\geq 5)$</th>
<th>$P_k(\geq 6)$</th>
<th>$P_k(\geq 7)$</th>
<th>$P_k(\geq 8)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.264</td>
<td>0.080</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.594</td>
<td>0.323</td>
<td>0.143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.80</td>
<td>0.577</td>
<td>0.353</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.908</td>
<td>0.762</td>
<td>0.567</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.96</td>
<td>0.875</td>
<td>0.734</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.983</td>
<td>0.938</td>
<td>0.849</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.993</td>
<td>0.970</td>
<td>0.918</td>
<td>0.827</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.997</td>
<td>0.986</td>
<td>0.958</td>
<td>0.899</td>
<td>0.809</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.884</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.92</td>
<td>0.857</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.91</td>
</tr>
</tbody>
</table>

We select the highlighted values, which are ~ 90% probabilities, and plot them in Figure 4, along with an appropriate curve fit.

![Figure 4. Correlation parameter k versus the mean number of signal pe's detected per frame, for ~ 90% Probability of Detection](image)

The curve fit result is given by $k = -1.4 + 0.78 \cdot N_{pe}^s$. (90%) (12).

After we insert Equation 7 into Equation 12, we have a second relationship between k and T_F, with the mean signal level per pulse as the only other dependence.

$$k = -1.4 + 1560 \cdot n_{pe}^s \cdot T_F, \quad (90%).$$ (13)
We have two equations relating k and T_F with the estimated signal and measurable noise rate parameters. Values of k / T_F that satisfy both equations will also meet both probability criteria, and be acceptable operating points.

Evaluation

Based on MODTRAN estimates for the path transmission and the background (cf. Bibliography), we take the realistic test values listed in Table 3 during acquisition.

Table 3. Test values for evaluation

<table>
<thead>
<tr>
<th>Case #</th>
<th>1 (Day)</th>
<th>2 (Night)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRF (kHz)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_{bin} (pico-sec)</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>n_{bin}</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>n^s_{pe}</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>n^f_{pe} (per second)</td>
<td>200,000</td>
<td>5,000</td>
</tr>
</tbody>
</table>

We use the values in Table 3 to evaluate Equations 3 and 7 and derive the mean signal and noise levels per bin during the frame as listed in Table 4.

Table 4. Mean signal counts per frame, and mean noise counts per bin per frame.

<table>
<thead>
<tr>
<th>Case #</th>
<th>1 (Day)</th>
<th>2 (Night)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N^s_{pe}</td>
<td>10 T_F</td>
<td>10 T_F</td>
</tr>
<tr>
<td>\bar{m}</td>
<td>0.2 T_F</td>
<td>0.005 T_F</td>
</tr>
</tbody>
</table>

The Table 3 values and Equations 11 and 13 lead to the results in Figure 5.

As an aid to interpretation, we have cross-hatched the allowable domain for Case 1, daytime, i.e. any combination of k and T_F values in the indicated domain will result in a better than specified performance, exceeding > 90% Detection Probability while providing < 1% of False Detection Probability per frame.

For purposes of comparison, we evaluate the exact probability equations for the k/T_F combination in the lowest corner of the cross-hatched region and find:

$$k = 4, \quad T_F = 0.7 \text{ seconds}$$
$$N^s_{pe} = 7, \quad \bar{m} = 0.14$$
$$P_D = 92.52\%$$
$$P_{FA} = 0.57\%$$

Sensitivity Example

If the uncertainty of the expected signal level is ± 25%, one could instead choose to operate at $k = 5$. Since for Test Case #1,

$$k = -1.4 + 1560 n^s_{pe} T_F,$$

(14) if $n^s_{pe} = 0.00375$, instead of 0.005, then $T_F = 1.1$ seconds will satisfy both Probabilities.
Figure 5. Operating region, satisfying both high signal detection probability and low false acquisition probability per frame.

Conclusion

This approach provides a precise technique for selecting the system set-up parameters for acquisition in the normal situation where a high probability of signal detection and a low probability of false acquisition are simultaneously desired. It also guarantees that a moderate miss-estimate of the signal level need not degrade performance, if the k / T_F pair are conservatively selected.

Bibliography

General SLR2000 Publications

J. McGarry, SLR2000 performance simulations, Tenth International Workshop on Laser Ranging, Shanghai, 1996,

EOO, Inc SLR2000 Publications

P Titterton, H. Sweeney, and T. Driscoll, ATSC SLR2000 EOO, Inc Technical Memo Summary

P. J. Titterton, Selection of SLR2000 Acquisition Parameters, Twelfth Workshop on Laser Ranging, Matera, 2000 [this paper].