The CDDIS:
Supporting Scientific Analysis for 25+ Years Using Space Geodesy Data and Products

Carey Noll/Code 690.1
CDDIS Manager

• History and background
• System development
• User community
CDDIS & Geodesy

- Crustal Dynamics Data Information System, NASA’s active archive of space geodesy data, products, and information
- Geodesy: Measuring the Earth’s geometry, gravity field, and rotation; the size and shape of the Earth
- Space Geodesy: Making these measurements between ground-based instruments and objects in space:
 - GNSS
 - Laser ranging
 - VLBI
 - DORIS
- Space geodesy enables research in solid Earth physics, natural hazards, oceanographic, atmospheric, and environmental science
- Accomplished through the creation of a terrestrial reference frame: positions and velocities of a global network of observing stations
Space Geodesy 101

- Space geodetic systems provide the measurements that are needed to define and maintain the International Terrestrial Reference Frame (ITRF)
- Each of the space geodetic techniques has unique properties that bring unique strengths to the determination of this reference frame:
 - Radio verses optical
 - Terrestrial (satellite) verses celestial (quasar) reference
 - Broadcast up verses broadcast down
 - Range verses range difference measurements
 - Geographic coverage

GNSS: Satellites (GPS-U.S., Russia-GLONASS, future EU-Galileo) equipped with precise clocks transmitting messages such as ephemeris, clock offsets, etc. to ground (and spaced-based) receivers to measure station to satellite pseudo-range, phase delay

SLR/LLR: Ground-based short-pulse laser transmitting to satellites (or planetary targets) equipped with corner cubes to measure round-trip pulse time-of-flight to satellite

VLBI: Radio telescopes equipped with X/S wideband receivers record signals from quasars to measure difference in signal arrival times

DORIS: Satellites equipped with DORIS receiver and uplink hardware transmit signals to ground beacons to measure Doppler shift on radiofrequency signals

http://cddis.nasa.gov
Global Networks: Input to the TRF
Historical Perspective (1/2)

- CDDIS began operations as the data system supporting NASA’s Crustal Dynamics Project in 1982
- The CDP used space geodesy to monitor plate motion and the rotational dynamics of the Earth with unprecedented accuracy
- Authorized CDP investigators obtained data from the CDDIS (tapes!) and provided their scientific results to the CDDIS
- The CDP paved the way for cooperative investigation using space geodesy
- Cost high, global coverage low (with SLR and VLBI)
Historical Perspective (2/2)

- By late 1980’s, government agencies, universities, etc. began deploying GPS receivers in permanent configurations for scientific study
- Goal: millimeter-level positioning
- Problem: No single government/agency/group could do the job on a global scale
- Solution: international, cooperative partnerships to facilitate research
- Multi-level cooperation: networks, data centers, analysis groups
- The International Association of Geodesy (IAG) began planning for the IGS - The International GPS Service
- IGS has provided precise GNSS observations and products for nearly 20 years
- Today, the International GNSS Service is a voluntary organization of over 200 agencies in over 90 countries
International Geodetic Services

• The IGS served as a model for the creation of other services for space geodesy techniques
• Services function as cooperating federations dedicated to a particular type of data
• Provide data and products on an operational basis to geodesy analysts as well as a broader scientific community
• Examples of a successful model of community management:
 – Develop standards
 – Self-regulating
 – Monitor performance
 – Define and deliver products using pre-determined schedules
• Successful operation through cooperation of many international organizations who leverage their respective limited resources to all levels of service functionality
Data/Products: From Source to User

- CDDIS is THE principle data center supporting services created under the IAG
- Simplicity has been the key to success!

http://cddis.nasa.gov
CDDIS Archive

- Archive size: ~6.5 Tb
- Ingest rate: ~60 Gb/1 M files per month
- Distribution rate: ~5.5 Tb/40 M files per month
- File size is typically <2 Mb/data “granule”, <10 Mb/derived product “granule”
- Easy to add new data types/data sets
- Files:
 - Data, products derived from these data, and information about data and products
 - Multi-day, daily, hourly, sub-hourly
 - Varying latencies (minutes, hours, days)
- Metadata:
 - Non-standard, data type specific
 - Extracted from data (not all products) and loaded into relational database
 - Internal access to database
CDDIS User Community

• Expert Users: scripts for automated, routine file retrieval
 – Science Teams:
 • Analysis Centers supporting IAG services, tasked with providing standard products as per service specifications
 • U.S. and international groups who produce products for use in higher level products (e.g., orbits for GRACE, Jason, etc.; ionosphere/troposphere products for weather models)
 • Require continuous access to data for generation of products on pre-determined schedules
 – Other data centers:
 • Retrieve files from CDDIS to equalize data holdings among other data centers supporting IAG services

• Novice/Occasional Users
 – Need to explore the contents of the archive by spatial, temporal, platform, or parameter specifications
 – Access archive through ftp to:
 • Pick and chose data or products
 • Grab large subsets of data on irregular basis
Supported Groups and Missions (a subset!)

International Services

Missions

Agencies and Universities

http://cddis.nasa.gov
International Observe the Moon Night

- http://www.nasa.gov/centers/goddard/visitor/events/observe-the-moon.html
- GSFC Visitor’s Center, September 18th from 6:30-10:00
- Tour and demonstrations of the Goddard Geophysical and Astronomical Observatory (GGAO) laser ranging facilities
- GGAO is home to NASA’s Satellite Laser Ranging (SLR) since its development in the early 1960s