New SPAD detector package for SLR and laser time transfer

Ivan Prochazka1, Tereza Flekova1, Jan Kodet1,2, Josef Blazej1

Presented at:

ILRS Technical Workshop 2019, Stuttgart, Germany
October 2019

1 Czech Tech. University in Prague, Brehova 7,115 19 Prague 1, Czech Republic
2 Technische Universität München, Forschungseinrichtung Satellitengeodäsie, München, Germany
Outline

- Why new SPAD detector(s) ?
- Detector parameters requirements
- Detector design construction
- Key parameters
 - timing resolution
 - timing drift
 - dark count rate
 - single – multiple photon response
- Summary & Conclusion
Why new SPAD detector(s)?

- #1
 The supply of TE3 cooled 200um diameter chips is approaching zero 😞

- #2
 New applications, namely Laser Time Transfer require extremely high timing stability ~ 100 fs

- #3
 New wavelengths (1064 nm, 1540 nm,...) see our poster
New SPAD detector package

- K14 SPAD chips 100um diameter
- AVAILABLE
- TE1 cooling, NO temperature sensor (!!)

- New active quenching and gating circuit
- Analogy to ELT+ space segment
- Very simple, compact, space qualified
- SPAD max 2.5 Volts above 😊

Optimized for high temperature stability

Rev. of Sci.Instruments **87**, 056102 (2016);
Built in SPAD bias control circuit is adjusting bias above break versus temp. and also tunes detection delay.

- Key components (SPAD, comparator) positive temperature coefficient ~ 1 ps/K
- SPAD chip detection delay vers. bias coefficient is negative -0.12 ps / mV
- SPAD bias control may compensate all the (smooth !) temperature contributors.

Rev. of Sci. Instruments 89, 056106 (2018)
New SPAD detector package
Passive compensation of temperature delay dependence

![Graph showing temperature dependence of SPAD chip and Comparator]
New SPAD detector package
Passive compensation of temperature delay dependence

SPAD Detection delay

- drift 40.7 mV/K; $U_{AB} = 1.6$ V
- drift 38.6 mV/K; $U_{AB} = 1.9$ V
- drift 36.5 mV/K; $U_{AB} = 1.7$ V

Drift ADJUSTABLE

Relative detection delay (ps)

Temperature (°C)
Thermoelectric cooling TE1 of SPAD chip

PROBLEM – No temperature sensor inside

- No chance to stabilize the chip temperature
- Stabilize the cooling current => fixed temperature step
- Compensate the detection delay of the entire device by its body temperature (hot side of TE1)
- It works (!) Delay stability is OK
- BUT the detector is more noisy in summer time 😊
Thermoelectric cooling TE1 of SPAD chip

Dark count rate

New gating logic, Terminate the windows
Worst case estimate, rather noisy test chip

I. Prochazka, ILRS Workshop, Stuttgart, 2019
Passive compensation of temperature delay dependence

Detection delay stability TE1

SPAD100um 2.5Vab Start NPET2 400Hz 10%

DELAY [ps]

0 2 4 6 8 10 12 14 16 18 20

hours after Power ON ; Oct.17 2018

+/- 500 fs @ day complete loop
Passive compensation of temperature delay dependence

Detection delay stability TE1

TDEV 60 fs @ hours

TIME STABILITY

SPAD 100um compensate laser hamamatsu Start NPET2

600Hz 8% mean of 256 2.2+sigma editing
Passive compensation of temperature delay dependence
Response to multiphoton echoes

C-SPAD operation of 100um chip is difficult

Detection delay constant
Ret. Rates 0 … 50%

ELT calibration tests Wettzell, Feb. 13, 2014
Passive compensation of temperature delay dependence

New SPAD detector package 100um TE1

- Standard SPAD housing, compact power supply
- New aspheric lens collecting optics, 12 mm diam. beam
- Standard Gate and output signals
- 1 : 1 replaceable with C-SPAD and/or HQE SPAD pack.

I.Prochazka, ILRS Workshop, Stuttgart, 2019
SUMMARY
New SPAD detector package 100um TE1
Passive compensation of temperature delay dependence

- Detector package for SLR and laser time transfer optimized for high detection delay stability

PARAMETERS

- Active area: 100 um diameter
- Photon det. Effi.: > 35 % @ 532 nm
- Jitter: < 18 ps rms
- Temp.drift: tunable, abs.< 250 fs /K
- Stability: < 100 fs @ hours

- Few photons / echo data rate up to 50% are acceptable for ideal targets and LTT

- Thanks for your attention

I.Prochazka, ILRS Workshop, Stuttgart, 2019