Reference frames and geodetic products

Daniela Thaller

Introductory and Refresher Course on Satellite and Lunar Laser Ranging

Stuttgart, Germany, October 20, 2019
Overview

▪ **The 3 pillars of geodesy and the reference frames:**
 • Geometry – Orientation – Gravity field
 • Contributions by SLR
 • Parameters for actual ITRF generation

▪ **SLR-based products generated within the ILRS:**
 • Organizational aspects
 • Characteristics of different products
 • Examples
The 3 pillars of geodesy and the reference frames:

- Geometry – Orientation – Gravity field
- Contributions by SLR
- Parameters for actual ITRF generation

SLR-based products generated within the ILRS:

- Organizational aspects
- Characteristics of different products
- Examples
The 3 Pillars of Geodesy

Earth geometry and kinematics:
Shape of the Earth and its variation

Earth orientation and rotation:
Earth rotation and its variation

Earth gravitational field:
Static (mean) and variable gravity field

- Requirement for integrated estimation:
 highly accurate, homogeneous, long-term stable reference frame
The 3 Pillars of Geodesy: Relationships

Earth Orientation

Celestial Reference Frame

Terrestrial Reference Frame

EOP
The 3 Pillars of Geodesy: Relationships

Earth Orientation

Celestial Reference Frame

Terrestrial Reference Frame

SLR: Satellite orbits as „quasi-inertial“ reference frame for a short time

EOP
Reference System and Reference Frame

Reference System

Geodetic Observations

Reference Frame

REALIZATION
The 3 Pillars of Geodesy: Contributions by SLR

Contributions by SLR:

1. **Geometry:**
 - Coordinates of SLR stations
 - Position variations due to, e.g., plate tectonics, loading deformation
 - Scale

2. **Earth Rotation:**
 - Polar motion
 - Length of Day (LOD)

3. **Gravity Field:**
 - Geocenter
 - Low-degree harmonics of Earth’s gravity field: depending on satellites
Parameter Space and Actual ITRF Computation

<table>
<thead>
<tr>
<th>Parameter Space</th>
<th>GNSS</th>
<th>VLBI</th>
<th>SLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station coordinates + velocities</td>
<td>XG</td>
<td>XV</td>
<td>XS</td>
</tr>
<tr>
<td>Satellite orbits</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Quasar coordinates</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Polar motion + rates</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Universal Time (dUT)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Length of Day (LOD)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nutation (+ nutation rates)</td>
<td>(x)</td>
<td>X</td>
<td>(x)</td>
</tr>
<tr>
<td>Geocenter</td>
<td>(X)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Earth’s gravity field</td>
<td>(x)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Troposphere</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>X</td>
<td></td>
<td>(x)</td>
</tr>
<tr>
<td>Technique-specific parameters</td>
<td>xG</td>
<td>xV</td>
<td>xS</td>
</tr>
</tbody>
</table>
Parameter Space and Actual ITRF Computation: ⇒ only few parameter types are included

<table>
<thead>
<tr>
<th>Parameter Type</th>
<th>GNSS</th>
<th>VLBI</th>
<th>SLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station coordinates + velocities</td>
<td>XG</td>
<td>XV</td>
<td>XS</td>
</tr>
<tr>
<td>Satellite orbits</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quasar coordinates</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Polar motion + rates</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Universal Time (dUT)</td>
<td>-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Length of Day (LOD)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nutation (+ nutation rates)</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Geocenter</td>
<td>(X)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Earth’s gravity field</td>
<td>(x)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Troposphere</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ionosphere</td>
<td>X</td>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>Technique-specific parameters</td>
<td>xG</td>
<td>xV</td>
<td>xS</td>
</tr>
</tbody>
</table>
Parameter Space and Actual ITRF Computation

No Direct combination possible; Co-location sites and Local Ties are needed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>XG</th>
<th>XV</th>
<th>XS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station coordinates + velocities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satellite orbits</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Quasar coordinates</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Polar motion + rates</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Universal Time (dUT)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Length of Day (LOD)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nutation (+ nutation rates)</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

Direct combination is possible

<table>
<thead>
<tr>
<th>Parameter</th>
<th>XG</th>
<th>XV</th>
<th>XS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth’s gravity field</td>
<td>(x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troposphere</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>X</td>
<td></td>
<td>(x)</td>
</tr>
<tr>
<td>Technique-specific parameters</td>
<td>xG</td>
<td>xV</td>
<td>xS</td>
</tr>
</tbody>
</table>
The 3 pillars of geodesy and the reference frames:
 • Geometry – Orientation – Gravity field
 • Contributions by SLR
 • Parameters for actual ITRF generation

SLR-based products generated within the ILRS:
 • Organizational aspects
 • Characteristics of different products
 • Examples
The ILRS – International Laser Ranging Service

- Under the umbrella of IAG (International Association of Geodesy)
- Integrated into the IERS as one of the Technique Centers
- Organizing product generation, data/product holding, exchange between individual groups, support new developments, exchange of knowledge
The ILRS – International Laser Ranging Service

Observing Sites

Observations

Analysis Centers (AC)

AC solutions for:
- Station positions
- Earth rotation parameter
- Satellite orbits
- Troposphere parameter ...

Combination Center

Combination of all individual AC contributions to one Service solution

Data base / Data Center
ILRS Analysis and Combination Centers
ILRS Analysis Centers: Software Packages used

- A broad variety of analysis software packages used among the Analysis Centers helps to reduce the „Analysis Noise“

<table>
<thead>
<tr>
<th>ILRS Analysis Centre</th>
<th>Software Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASI, Italy</td>
<td>Geodyn</td>
</tr>
<tr>
<td>BKG, Germany</td>
<td>Bernese GNSS Software, SLR development version</td>
</tr>
<tr>
<td>DGFI-TUM, Germany</td>
<td>DOGS-OC</td>
</tr>
<tr>
<td>ESA</td>
<td>NAPEOS</td>
</tr>
<tr>
<td>GFZ, Germany</td>
<td>EPOS</td>
</tr>
<tr>
<td>GRGS, France</td>
<td>GINS / Dynamo</td>
</tr>
<tr>
<td>JCET, USA</td>
<td>Geodyn</td>
</tr>
<tr>
<td>NSGF, UK</td>
<td>SATAN</td>
</tr>
</tbody>
</table>
SLR-based Products by the ILRS

- 7-day solutions = 7-day orbital arcs

- **Satellites** used for operational products:
 - LAGEOS, LAGEOS-2:
 - Orbital height ≈ 5.800 km
 - ETALON-1/-2:
 - Orbital height ≈ 19.000 km

- **Parameters** estimated:
 - Satellite orbits
 - Station coordinates
 - Earth rotation parameters: x-/y-pole, LOD
 - Range biases for selected stations
(1) **Operational products**

- **DAILY** products (= „Rapid“ product) are due 2 days after last observation day:
 - e.g. for the DAILY orbital arc Tuesday-Monday, the product needs to be delivered on Wednesday morning (UT)
- **WEEKLY** products (orbital arc Sunday - Saturday) are due on Wednesday

(2) **Special study products:**

- Estimating range biases to investigate potential systematic errors
- Inclusion of the LARES satellite
- Estimation of low-degree gravity field coefficients
- Impact of non-tidal loading

(3) **Re-analysis for ITRF generation** (e.g. input for ITRF2020)
ILRS Analysis Statistics per Orbital Arc
(from Luceri et al., 2014)
Geodetic Products by the ILRS

- **Station coordinates:**
 - DAILY
 - WEEKLY
 - via ITRF

- **Station velocities:**
 - via ITRF

- **ERPs:**
 - DAILY
 - WEEKLY

- **Satellite orbits:**
 - WEEKLY

- **Geocenter / Gravity field:** no official ILRS product yet
ILRS DAILY Solution Series: Scale

Scale w.r.t. actually used ITRF (using „Core Sites“):

0.3 – 2.0 ppb

Starting point of using ITRF2014 in SLR analysis
ILRS DAILY Solution Series: Polar motion

Polar motion w.r.t. IERS Bulletin A
Thank you for your kind attention!

Contact:
Federal Agency for Cartography and Geodesy
Section G1
Richard-Strauss-Allee 11
60598 Frankfurt, Germany

contact person:
Dr. Daniela Thaller
daniela.thaller@bkg.bund.de
www.bkg.bund.de
Tel. +49 (0) 69 6333-273
Current ITRF approach

Inter-technique Combination
DORIS + GNSS + SLR + VLBI

IGN, Paris
DGFI, München
JPL, Pasadena
ITRF2014 generation: ILRS Time Line

- AC submission
- Solution check
- Combination
- 1993-2013 ILRS Release
- AC submission 2014
- Check & Combination 1983 - 2014
- ILRS FINAL CONTRIBUTION
The organization and exchange between the ILRS Analysis and Combination Centers is done within the „ILRS Analysis Standing Committee“ (formerly „Analysis Working Group“)

- Define the guidelines for product generation
- Define next steps forward by organizing Pilot Projects

Led by the 2 Analysis Coordinators:
- Erricos Pavlis (JCET, US)
- Cinzia Luceri (ASI, Italy)

Meeting usually twice per year (EGU in April; ILRS Workshop in Oct/Nov)

Participation is open for any interested people
SLR data analysis: DAILY solution series

Global 3-D WRMS w.r.t. actually used ITRF (using „Core Sites“): 5 - 10 mm

Starting point of using ITRF2014 in SLR analysis
Consistency between AC contributions

wrms of SSC residuals wrt ILRSA (yearly running average)