Studying different tracking strategies to LAGEOS and Etalon with respect to the weekly ILRS solution

Florian Andritsch

Astronomical Institute, University of Bern, Switzerland

2017 ILRS Technical Workshop

October 03, 2017, Riga University of Latvia
Overview

- Introduction
 - ILRS solution for ITRF
 - Motivation: Simulation approach

- Replacing observations by simulation

- Changing the distribution of observations between LAGEOS and Etalon

- Conclusions

- Outlook and open questions
Introduction – The ILRS targets

- 85 targets today.
- Upon completion of the Galileo constellation and others: soon 100+ targets.

https://ilrs.cddis.eosdis.nasa.gov/missions/satellite_missions/index.html
In 2016:

- In average 130000 NPs/month in total.
- 13000 NPs of those to LAGEOS.
 - 10% of total NP to only 2 of 100 satellites.
- 1200 NPs to Etalon.
 - Only 10% of the ILRS solution for the ITRF comes from Etalon.
SLR observations to LAGEOS1, LAGEOS2, Etalon1 and Etalon2 are used to estimate
- the individual ERP,
- station coordinates,
- and orbits.

(7 day arcs)

→ then combined in weekly solution.
Introduction – SLR productivity shortcomings

- Highly inhomogenous station network.
 - Station distribution, expanding the Network.
 - Increasing the productivity of stations with less observations.

- Scheduling according to priority list.
 - Study the effect of specific tracking strategies on different products.
Experiment: Reducing LAGEOS NPs

- Impact of number and distribution of observations on the LAGEOS and Etalon satellites.
 - Comparison of different scenarios:

![Graph showing the impact of number and distribution of observations on the LAGEOS and Etalon satellites.]
Comparing scenarios

RMS of Helmert transformation

Day of year 2016
Comparing Scenarios

Differences of geocenter coordinates

ΔX [cm]

ΔY [cm]

ΔZ [cm]

% Reduction
Summary

- **RMS of Helmert**: increases when reducing LAGEOS observations. Up to 20% Reduction the RMS stays within the simulation noise RMS threshold.

- **ERP, translation/rotation**: insignificant difference.

- **Orbits**: Average residuals of LAGEOS orbits slightly increase but remain at the same maximum level of ~10cm.

- **Scale factor, geocenter**: Scenarios clearly show a decrease beyond 20% reduction.

=> 20% of LAGEOS NPs could go to other targets.
Experiment: Increasing NPs to Etalon

- Taking 20% of LAGEOS observations and replace them with Etalon.

- Total number of NP in ILRS solution remains the same!

- Impact on the main parameters of the solution?
Etalon orbits

RESIDUALS IN EARTH-FIXED SYSTEM 953 and 954 2016

X

Y

Z
Etalon orbits

RESIDUALS IN EARTH-FIXED SYSTEM 953 and 954 2016

X

Y

Z

Etalon1

Etalon2
Increasing NPs to Etalon – ERPs

Δ X Pole

Δ Y Pole

Δ UT1-UTC

Reference
10% more Etalon
Summary

- **RMS of station coordinates**: on the same level as with LAGEOS.

- **Translation/Rotation**: not significant.

- **Orbits**:
 - LAGEOS: Slightly bigger average differences, but still on the same ~10cm level.
 - Etalon: Vastly improved orbits.

- **ERPs improved by 10%**
Conclusions

- Meaningful comparison of similar tracking scenarios is possible.
- Simulation of tracking strategies to evaluate improvements and benefits.
- Reduction of observations to LAGEOS by 20% without significant decrease of the quality of solution.
- Increasing the number of NPs to Etalon improves Etalon orbits and ERPs.

Each NP can make a difference!
Outlook

- Including LARES in the solution and increasing NPs for it.
- More NPs for other low flying satellites.
- Synchronized regional tracking (e.g. in Europe)
 - Same or different targets at specific passes?
- Comparison of tracking strategies to GNSS satellites in SLR+GNSS Combination
 - Less than 100NP/week per GLONASS satellite
 - Less than 1000NP/week on all GLONASS
- What else? – Looking forward to discussing ideas.

Thank you for your attention!