Review of Solid State Photon Counters for Laser Ranging to Orbital Space Debris

I. Prochazka1, J. Kodet1,2, J. Blazej1
K.G. Kirchner3, F. Koidl3

Presented at

2015 ILRS Technical Workshop, Matera, Italy, October 26 – 30, 2015

1Czech Technical University in Prague, Prague, Czech Republic
2TU Munich, Geodetic Observatory Wettzell, Bad Kötzting, Germany
3Space Research Institute, Austrian Academy of Sciences, Graz, Austria
OUTLINE

- Requirements on detectors
- Detectors available - review
 - Si SPAD detectors (VIS)
 - Ge and InGaAs SPAD detectors (NIR)
 - Superconducting detectors (NIR)
- Conclusion
Requirements put on detectors for space debris laser ranging

- EXPERIMENT ENERGY BUDGET
 = > single photon response
 high Photon Detection Efficiency (PDE)

- LASER SOURCES AVAILABLE & SAFETY
 = > sensitive @ 532 or 1064 or 1550 nm

- OPTICAL TRACKING TELESCOPE FoV
 = > detector aperture >= (50) 100 um

- FIELD OPERATION
 = > robust, reliable
Photon counting detectors
key parameters for laser ranging

- **VACUUM / PHOTOCATHODE** based
 - Apertures: 1 mm .. 1 meter
 - Wavelength range: UV 1550 nm
 - Photon Detect. Eff.: 30 % 0.1 %

- **SEMICONDUCTING** detectors
 - Apertures: 0.1 ... 0.5 mm
 - Wavelength:
 - 532 ... 1064 nm Si
 - 532 ... 1550 nm Ge / 77K
 - 1064 ... 1550 nm InGaAs
 - PDE: 70 % @ 532 nm Si

- **SUPERCONDUCTING** detectors (kryo-cooled)
 - Apertures max.: 10 um (50 um ?)
 - Wavelength: UV 1550 nm
 - PDE: > 70 % @ 1550 nm

Prochazka, Kodet, Blazej, Kirchner, Koidl, Matera 2015y
Si SPAD Detector Package for SLR
jointly Czech Tech. Univ. in Prague and IWF Graz

- Self-consistent compact package
- SPAD TE cooled in vacuum
- collecting optics f/D = 1.0
- time walk compensation
- 50 x 50 x 130 mm, 300 g

- Detector aperture 200 um, f/D = 1, => acceptable FoV
- Photon Det. Efficiency ~ 40 % @ 532 nm (P.Guilemont, CNES, 2006)
- Used by > 15 SLR stations worldwide
- Applied for the first space debris laser tracking demonstration

Prochazka, Kodet, Blazej, Kirchner, Koidl, Matera 2015y
SPAD detector package for SLR applied for space debris laser tracking

Mt. Stromlo, Australia, 2002
www.eos-aus.com/space/education/..

Shanghai, China, July 17, 2008
discarded US rocket (ID 2007-006G)

Prochazka, Kodet, Blazej, Kirchner, Koidl, Matera 2015y
SPAD detector package with high PDE for space debris tracking

- High Photon Detection Efficiency PDE
- SAP500 detector by Laser Components
- APD on Si, 0.5 mm diameter, ~100 V break.
- PDE typically 70% @ 532 nm (M.Stipcevic, 2011)
SPAD detector package with high PDE #2
for space debris tracking, version 2015

- HQE Detector package developed
- Single TE cooling to -8°C
- 1:1 replaceable to other SPAD detectors
- Operational Graz, Wettzell, Shanghai,…

< 25 kHz @ 15V ab

220 ps @ 15V ab

Prochazka, Kodet, Blazej, Kirchner, Koidl, Materia 2015
InGaAs/InP Photon Detectors 1064 nm

- candidate for 1064 nm operation in a near future
- "never ending story 1064 <-> 532 nm"
- gain of 1064 nm
 - 1 photon 2 x
 - SHG generation 2 x
 - atmo. atten. 1.5 x ?
 - Target reflect. ... ?
 - ----------------------------------
 - Total gain 4..6 x

- Detection efficiency >~ 15 % @ 1064 nm
- Active area 60 um diameter max.
- Dark count rate < 25 kHz / - 60 C
- InGaAs technology still in progress

Prochazka, Kodet, Blazej, Kirchner, Koidl, Matera 2015y
Germanium SPAD Detector Package for VIS - 1550 nm

- Ge SPAD, 100 um / 77 K
- PDE ~ 20% @ 400..1064 nm
 2 - 5% @ 1540 nm
- dark count >= 1 MHz
- SLR and space debris LR @ 1540 nm demonstrated: CRL Tokyo, EOS Australia

Prochazka, Kodet, Blazej, Kirchner, Koidl, Matera 2015y
Superconducting Nanowire Single Photon Detectors

- High PDE: >70% 1550 nm
- Jitter: < 16 ps
- Dark count rate: < 100 Hz
- Temperature: < 4 K
- Size: “large” 25 um promised 50 um (?)

Proposal for a joint experiments by manufacturer

Application possibility depends on size and optical coupling improvements
Conclusion

- Photon counting is the only receiver option for laser ranging to orbiting space debris.

- SPADs on Si provide good detection efficiency at 532 nm, existing, available, heritage

- SPADs on InGaAs are promising candidates for 1064 nm range, energy budget if available

- Superconducting detectors are a dream for future systems operating at 1540 nm, energy budget, eye safety IF AVAILABLE

- Good News - Europe is a leader in developing these detectors We have good contacts to detector labs

- We should not miss this chance!

- Thanks for your attention

Prochazka, Kodet, Blazej, Kirchner, Koidl, Matera 2015y
Single Quantum
superconducting nanowire single photon detectors

Bias current $I < I_c$

Superconductivity recovered

Resistive barrier

Hotspot: High current density

Enlarged hotspot

Just a single photon can create a large enough hot spot in a 100 nm wide nanowire to stop the current flowing in the device. The meander geometry enables to cover a large surface area with a single nanowire.

Single Quantum BV, Lorentzweg 1, 2628CJ Delft, Netherlands
Single Quantum
superconducting nanowire single photon detectors

- Sensitive from UV to MIR
- Q.E. can be tailored for desired wavelength:
 - e.g. 80% Q.E. for 532 nm possible

![Graph showing detection efficiency vs wavelength](image)

Single Quantum BV, Lorentzweg 1, 2628CJ Delft, Netherlands
Single Quantum
superconducting nanowire single photon detectors

- **High efficiency for NIR:** >75% for 1310nm, >70% 1550nm

![Graph showing detection efficiency and dark counts versus I/Ic](image)
Single Quantum
superconducting nanowire single photon detectors

- **Low noise:** dark counts can be reduced to <10 Hz.
Single Quantum
superconducting nanowire single photon detectors

- High time resolution: < 40 ps time jitter
- This Dutch company is developing and producing these detectors
- It operates with a closed-loop cryostat – no refilling etc.
- Graz is checking possibilities to test it in Graz;
- Maybe a station with non-moving detector package would be a more suitable test-bed?