Zimmerwald Laser Observations to Determine Attitude States of Space Debris

Thomas Schildknecht, J-N. Pittet, J. Silha, M. Prohaska, M. Ploner

Astronomical Institute, University of Bern, Switzerland

2015 ILRS Technical Workshop, 26–30 October, 2015, Matera, Italy
1. Introduction and objectives
 - SLR observations of space debris
 - Attitude state determination
2. Attitude state determination of Envisat
3. Topex
4. Summary
SLR SD Observations: Objectives

General Objectives:

- Improve orbits of space debris
 - Catalogue maintenance
 - Conjunction assessment
 - Re-entry predictions
- Monitoring the attitude state of space objects (spin rate, spin rate evolution, spin axis orientation)
 - Critical parameter for Active Debris Removal mission; long term attitude evolution monitoring, attitude modeling
 - Contingency support
 - Diagnostics, e.g. satellite functional but not behaving nominally
 - Study of specific perturbations, torques on space objects (physics)

Targets:

- Cooperative targets; minority (today)
- Non-cooperative targets
Supplementing Optical/Radar Observations

With RRA ("cooperative")
- LEO to MEO objects
- Reasonable quality a priori orbits required
- Day and night (weather)
- Attitude state determination
- "Standard" SLR system

W/o RRA ("non-cooperative")
- LEO
- Small divergence → good a priori orbits required; optical observations for first acquisition and orbit improvement
- Day? Attitude?
- High power Lasers

Fusion of range (SLR) and angle (optical) data
- Improves OD substantially
- Attitude state for non-cooperative targets
Attitude States of Space Debris...

Top ADR targets:
- existing debris
- massive objects (mostly r/b)
Attitude States of Space Debris

Objectives:

- Monitoring the attitude state of space objects (spin rate, spin rate evolution, spin axis orientation)
- Attitude determination (cooperative targets):
 - Observation of motion of RRA w.r.t. center of mass of debris object
 - Analysis of residuals w.r.t. (improved) orbit
 - Analysis of visibility of RRA
 - Results support development and validation of attitude models → attitude evolution modelling (ADR!)
 - Validation/refinement/support of other attitude determination techniques, e.g. radar, ISAR, and optical → radar and optical required for non-cooperative objects (majority of potential ADR targets)
Envisat Photometry & SLR

Optical Light Curve
P=123s
apparent period changing within light curve (changing geometry)!

SLR Residuals
Envisat: Detrending Residuals

Detrending

- Estimate along-track error (physical model)
- Removes trend
- Period estimation

→ Less susceptible to missing data than polynomial fits!
Envisat: Detrending Residual

![Graph showing detrending residual analysis for Envisat.](image-url)
Envisat: Spin Rate Evolution

- Peak to peak approach
- apparent → inertial requires assumption on spin axis orientation
 => We assumed a spin axis fixed in RSW (as other teams).
Envisat: Characteristic Pass Elevation

- CPE: Characteristic Pass Elevation → maximum elevation of the observatory seen from the target
Envisat: Characteristic Pass Elevation

- return rate over time as $f(\text{CPE}) \rightarrow$ attitude evolution
Envisat: Return Rate as f(CPE)
Envisat: Spin and Visibility Model

- New approach, free of assumptions on spin axis orientation (e.g. fixed in RSW system)
Envisat: Spin and Visibility Model

- New approach, free of assumptions on spin axis orientation (e.g. fixed in RSW system)
Envisat: «On Edge» of Visibility

ENVISAT - EV02JA14U
Peaks period: 126.7 [s]
Limb period: 95.5 [s]
Points: 65 (PNP)
AT-corr: -5.8 [ms]
DUT-corr: 117.4 [ms]

T. Schildknecht: Photometric Monitoring of Non-resolved Space Debris 2015 ILRS Technical Workshop, 26-30 October, 2015, Matera, Italy

Astronomical Institute University of Bern
Refined values:
- Spin rate
- 2 angles (spin axis orientation)
- 2 fit parameters related to detrending
- Currently predictions from Graz/SDSG used
- for other targets own orbits – astrometry, ranges
Topex

- Typical TOPEX light curve (full pass)
CMOS TOPEX light curve, specular reflections visible
Summary

- **Zimmerwald SLR observations** of a series of cooperative targets

- **Zimmerwald light curves**
 - for >100 LEO objects
 - >1000 light curves from high-altitude r/b, s/c and fragments including objects with SLR retroreflectors

- **SLR attitude state determination** for Envisat (Topex, more to come)
 - physical model for «detrending»
 - fusion of SLR and optical data (attitude state and orbit)
 - forward modeling

- **Validation/refinement of other attitude determination techniques**, e.g. radar, ISAR, and optical to be used for non-cooperative targets